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Abstract: 
 

Glucagon is secreted from the alpha cells of the pancreatic islets and regulates 

glucose homeostasis through modulation of hepatic glucose production. As 

elevated glucagon levels contribute to the pathophysiology of hyperglycemia in 

subjects with type 2 diabetes, reduction of glucagon receptor (Gcgr) activity 

represents a potential target for the treatment of T2DM. Herein we review 

current concepts of glucagon action in hepatic and extra-hepatic tissues and 

evaluate the therapeutic potential, mechanisms of action, and safety of reducing 

Gcgr signaling for the treatment of T2D. 
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Introduction: 

 

Insulin and glucagon are pancreatic hormones which play pivotal roles in 

regulating glucose homeostasis and metabolism. Subjects with type 2 diabetes 

mellitus (T2D) have fasting hyperglucagonemia with impaired post-prandial 

glucagon suppression in the presence of defective insulin secretion and/or 

action. Inhibition of post-prandial glucagon secretion in diabetic subjects has 

been shown to substantially reduce blood glucose suggesting that glucagon 

contributes significantly to the hyperglycemia seen in subjects with T2D (16, 

62, 63). These observations have prompted interest in reduction of glucagon 

secretion or blockade of glucagon receptor (Gcgr) activity for the treatment of 

T2D. In this review we summarize recent advances in understanding the actions 

of glucagon in hepatic and extra-hepatic tissues and provide an overview of the 

therapeutic potential of Gcgr inhibition for the treatment of T2D. 

 

Glucagon synthesis and secretion: 

 

Glucagon is a 29 amino acid peptide hormone encoded within a proglucagon 

precursor which also contains amino acid sequences for glucagon-like peptide-1 

(GLP-1), glucagon-like peptide-2 (GLP-2), oxyntomodulin and glicentin 

(Figure 1). Tissue specific post-translational processing of proglucagon in α-

cells is mediated by prohormone convertase 2 (PC2), which cleaves 

proglucagon to liberate glucagon and leaves unprocessed the carboxyterminal 

major proglucagon fragment. In contrast, prohormone convertase 1/3 (PC1/3) 

cleaves proglucagon in intestinal L cells and brain to liberate GLP-1, GLP-2, 

oxyntomodulin and glicentin (3). Glucagon secretion by α-cells is highly 

regulated by multiple factors the most important of which are glucose and 

insulin (18) and reviewed in (61). Low glucose levels activate specific channels 

in the brain, specifically, the KATP channel (51), and on pancreatic α-cells to 

generate action potentials of sodium and calcium currents leading to glucagon 

secretion. However, whether the modulating effect of glucose on glucagon 

secretion is predominantly direct or indirect remains uncertain. Studies 
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conducted with mouse and human α-cells show that glucose can directly inhibit 

glucagon secretion. In contrast studies with rat α-cells show that glucose 

regulates glucagon secretion in a paracrine manner (61). β-cell-derived products 

such as insulin, GABA, and zinc also inhibit glucagon secretion (5). The 

mechanisms responsible for insulin-mediated inhibition of α-cell glucagon 

secretion may involve insulin-mediated activation of GABA receptor 

translocation to the cell surface in an Akt-dependent manner (74). Similarly, 

secretion of zinc from β-cells appears to be important for suppression of 

glucagon secretion, and reduced zinc secretion promotes enhanced glucagon 

secretion in response to hypoglycemia (76). Nevertheless, experiments using 

rodent and human islets demonstrated that glucose-mediated suppression of 

glucagon secretion may occur independent of GABA or zinc, and requires 

functional KATP channels (48). Somatostatin inhibits glucagon secretion by 

inhibition of adenylate cyclase and cAMP production and genetic deletion of 

the somatostatin receptor subtype-2 is associated with mild hyperglucagonemia 

and defective glucose- and somatostatin-mediated suppression of glucagon 

secretion in isolated islets in vitro (65).  Similarly the incretin hormone GLP-1 

inhibits glucagon secretion in a glucose-dependent manner through mechanisms 

requiring the somatostatin receptor subtype-2 (15).  

 

Glucagon action and the Gcgr 

 

The major biological action of glucagon is to counteract the actions of insulin 

and maintain normoglycemia during the fasting state by inducing hepatic 

glucose production. Glucagon exerts its action on target tissues through 

activation of the Gcgr, a G protein coupled receptor (GPCR) member of the 

class II GPCR superfamily (33). Gcgr activation leads to signal transduction by 

G proteins (Gαs and Gq), whereby Gαs activates adenylate cyclase which 

causes cAMP production resulting in an increase in levels of protein kinase A. 

Gq activation leads to phospholipase C-mediated increases in intracellular 

calcium levels.  Gcgr signaling in the liver results in increased hepatic glucose 

production by induction of glycogenolysis and gluconeogenesis along with 
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inhibition of glycogenesis (34). The actions of glucagon to promote increased 

hepatic glucose production are extremely rapid and reflect changes in the 

activity of enzymes regulating gluconeogenesis and glycogenolysis. Glucagon-

stimulated increases in cyclic AMP lead to activation of glycogen 

phosphorylase and inhibition of glycogen synthase. The actions of glucagon to 

control gluconeogenesis are mediated through coordinate regulation of the 

CREB (cyclic AMP-regulated binding protein), regulated transcription 

coactivator 2, histone acetyltransferase p300 and the nutrient-sensing 

deacetylase sirtuin 1 (SIRT1), resulting in increased expression of genes 

regulating gluconeogenesis (45). The Gcgr is also expressed in extra-hepatic 

tissues which include heart, intestinal smooth muscle, kidney, brain and adipose 

tissue (27) and much less is known about the action of glucagon in these tissues  

(Figure 2). 

 

Glucagon and the cardiovascular system (CVS) 

 

   Pharmacological doses of glucagon activate adenylate cyclase in a beta-

adrenoreceptor-independent manner leading to cyclic AMP (cAMP) production 

in the myocardium, and a positive inotropic and chronotropic effect. 

Accordingly glucagon is occasionally used for the treatment of poisoning 

caused by cardio-depressant drugs such as beta-blockers or calcium channel 

blockers (73). The inotropic effects mediated by glucagon in the CVS may be 

preferentially localized to the ventricular myocardium due in part to differential 

Gcgr expression in the ventricle compared to the atrium (23). Infusion of 

glucagon in perfused rat hearts at levels designed to achieve physiological 

concentrations of glucagon leads to induction of glycolysis and glucose 

oxidation, similar to insulin actions in the heart, that are mediated via PI3K-

dependent, adenylate cyclase and cAMP-independent pathways (28). Hence, 

unlike the effects of glucagon in the liver that generally oppose insulin action, 

glucagon and insulin action in the heart may overlap in regard to stimulation of 

fuel metabolism. 

 

Glucagon, the kidney and the gastrointestinal tract: 
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Glucagon stimulates adenylate cyclase and cAMP production in nephrons and 

in cell free preparations of human renal medullas (54, 75). Although the role of 

glucagon in the control of renal glucose output remains uncertain glucagon 

regulates the rate of kidney filtration, urea excretion and water re-absorption by 

the kidney (26), via direct and indirect mechanisms (4). Paradoxically, long 

term infusion of glucagon in mice leads to kidney injury through the 

development of hypertension, hypertrophy and increased proliferation of 

mesangial cells (40). Although the Gcgr is also expressed in the gut where it 

regulates motility (58, 69), very little is known about the physiological role of 

glucagon in the gut.  

 

Glucagon and the endocrine pancreas: 

 

Gcgr immunoreactivity and mRNA expression have been detected 

predominantly in β-cells from rodent pancreas, however subsets of α- and δ-

cells also express the Gcgr (37). Additionally, glucagon has been shown to 

regulate cAMP production in beta cells. However glucagon-mediated cAMP 

production in β-cells is less potent than that induced by the incretin hormones 

GLP-1 and GIP (53). Nevertheless, glucagon induces insulin secretion in 

human subjects. Moreover, insulin secretion is increased from perfused 

pancreas and isolated beta cells in the presence of glucagon (37, 53). The 

stimulatory actions of glucagon on the islet β-cell may be mediated through 

dual activation of both the Gcgr and the GLP-1R (52). However, the molecular 

mechanism(s) and physiological importance of glucagon-stimulated insulin 

secretion require further elucidation. Even less is known about the role of the 

Gcgr in α-cells, however several studies have demonstrated Gcgr expression in 

at least a subset of rodent α-cells (37, 47). Glucagon stimulates cAMP 

production in a dose-dependent manner from rat and mouse α-cells (37, 47) and 

increases α-cell exocytosis in a PKA-dependent manner suggesting that it may 

regulate its own secretion (47). However, the importance of glucagon action on 

α-cells is uncertain. 
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Glucagon action in the brain and adipose tissue: 

 

   The proglucagon gene is expressed in the brainstem and to a lesser extent, in 

the hypothalamus (17), and afferent projections distribute proglucagon-derived 

peptides to diverse brain regions (35). Glucagon binds to brain membranes and 

mouse astrocytes and stimulates adenylate cyclase and cAMP production 

respectively (12, 31). Intracerebral administration of glucagon at doses likely to 

produce pharmacological levels of glucagon in the brain produces dose-

dependent hyperglycemia in rodents through mechanisms requiring cholinergic 

and alpha-adrenergic neural pathways (1, 50). Glucagon infusion in the CNS 

also inhibits food intake (32), and the anorectic actions of glucagon require 

functional vagal afferents (72). Moreover, neutralization of endogenous 

glucagon via intraportal infusion of glucagon antibodies increased meal size in 

normal rats, effects that were abolished in rats with selective hepatic vagotomy 

(20). The satiety-promoting effects of glucagon may also involve suppression 

of ghrelin secretion, actions that require an intact hypothalamic-pituitary axis 

and ghrelin has been shown to regulate feeding behavior; suggesting that the 

satiety effect of glucagon could be mediated through ghrelin (2). 

   Although Gcgr expression is detected in adipose tissue, the role of Gcgr in the 

induction of lypolysis in adipose tissue is contradictory. Although glucagon 

increases lipolysis in rat and human adipocytes (29, 59), subcutaneous infusion 

of glucagon in abdominal adipose tissue of healthy male subjects had no effect 

on lipolysis (24). Hence the precise role of glucagon in the control of lipolysis 

remains uncertain. 

 

Glucagon and the pathophysiology of Type 2 diabetes: 
 

   Type 2 Diabetes is characterized by impaired insulin secretion and/or action, 

and many subjects also exhibit inappropriate levels of circulating glucagon in 

the fasting and postprandial state. An increase in the glucagon:insulin ratio is 

likely an important determinant of the hyperglycemia seen in T2D patients (6, 

7, 19). Consistent with the importance of glucagon for fasting hyperglycemia, 
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infusion of low doses of glucagon leads to the development of hyperglycemia 

(44), whereas suppression of glucagon secretion in the fasting state by 

somatostatin infusion significantly reduces hepatic glucose production (6) Lack 

of suppression of post-prandial glucagon secretion in subjects with T2D also 

plays an important role in the pathogenesis of postprandial hyperglycemia (22, 

30, 63). The molecular mechanisms responsible for dysregulation of α-cell 

glucagon secretion in diabetic subjects remain unclear, but may include 

impaired glucose sensing by α-cells and/or resistance of α-cells to the 

inhibitory actions of insulin or other β-cell secretory products, such as zinc or 

GABA. 

 

Reduction of Gcgr signaling for the treatment of diabetes: 

 

   Considerable preclinical evidence supports the targeting of glucagon action as 

an effective approach to reduction of hyperglycemia. Immunoneutralization of 

glucagon with a monoclonal antibody produced significant improvements in 

plasma glucose in rats with streptozotocin-induced diabetes (10). Similarly, 

glucagon antibodies markedly reduced hepatic glucose production and reduced 

the extent of hyperglycemia in normal and diabetic rabbits (9). Additionally, 

immunoneutralization of plasma glucagon, decreased hepatic glucose output 

and reduced glucose and HbA1c in ob/ob mice, providing further evidence for 

the central role of glucagon in the pathogenesis of diabetic hyperglycemia (67). 

   Both peptide and non-peptide glucagon receptor antagonists have been 

generated for use as experimental tools to block glucagon action (34). 

Consistent with data from glucagon immunoneutralization studies, Gcgr 

antagonists lower blood glucose in response to exogenous glucagon 

administration in non-diabetic rodents, and block the actions of endogenously 

elevated levels of glucagon leading to reduction of hyperglycemia in diabetic 

rodents (14, 36, 70). Several different classes of small-molecule based orally 

available Gcgr antagonists have been identified including tri-substituted ureas, 

benzimidazole, alkylidene hydrazide and beta alanine derivative. These 

molecules were active following oral administration in dogs, rhesus monkeys 
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and non-diabetic and diabetic rodents (38, 39, 42, 49). Furthermore, BAY27-

995, a small molecule Gcgr antagonist, successfully blocked exogenous 

glucagon-stimulated glucose production in human subjects (60). 

   Complementary strategies for reduction of hepatic Gcgr signaling have 

utilized antisense oligonucleotide (ASO) to target hepatic Gcgr expression. 

Twice weekly intraperitoneal administration of Gcgr ASOs to db/db mice 

significantly reduced plasma levels of glucose, triglycerides, and free fatty acids 

without associated hypoglycemia (43). Similarly, Gcgr ASOs reduced 

hyperglycemia in ob/ob and db/db mice and Zucker diabetic fatty rats, together 

with a reduction in plasma and hepatic triglyceride content. Intriguingly, 

plasma levels of glucagon and GLP-1 were markedly elevated in rodents treated 

with Gcgr ASOs, in association with the development of α-cell hyperplasia and 

hypertrophy, findings that were reversible following discontinuation of ASO 

therapy (66). Taken together these studies demonstrate that transient inhibition 

of Gcgr expression and/or glucagon action can inhibit hepatic glucose 

production leading to improved glucose homeostasis in rodents.  

 

Elimination of Gcgr signaling: insights from Gcgr-/- mice 

 

Studies of mice with targeted disruption of the Gcgr gene (Gcgr -/-) have 

demonstrated that Gcgr-/- mice are viable and exhibit mild fasting 

hypoglycemia (21, 56). Unexpectedly Gcgr -/- mice markedly increased 

circulating levels of GLP-1, and multiple phenotypes consistent with enhanced 

GLP-1 action, including improved glucose homeostasis, reduced gastric 

emptying, decreased adiposity, increased lean body mass and resistance to 

streptozotocin (STZ)-induced diabetes and diet induced obesity (Table 1) (13, 

21, 56, 68, 71). The improvement in glucose homeostasis likely reflects a 

reduction in fasting glycemia due to reduced hepatic glucose production, and 

improved β-cell function as a result of increased circulating levels of GLP-1 in 

Gcgr-/- mice (21). Hence, the extent to which the improved metabolic 

phenotype of Gcgr -/- mice reflects the direct loss of Gcgr signaling in liver vs. 

the contribution of enhanced GLP-1 action, remains to be determined, through 



 10

additional studies employing GLP-1 receptor antagonists and/or genetic loss of 

GLP-1 action in the context of reduced Gcgr signaling. 

 

Inhibition of Gcgr signaling: potential limitations  

 

  Although inhibition of Gcgr signaling for the treatment of T2D shows 

promising results in rodent models with diabetes, partial or complete ablation of 

the Gcgr is associated with several unexpected phenotypes that merit careful 

consideration in light of therapeutic attempts to attenuate Gcgr action for the 

treatment of type 2 diabetes. Notably, loss of Gcgr signaling is associated with 

the development of islet hyperplasia and increased endocrine cell proliferation, 

detectable in rodents following partial transient reduction or genetic extinction 

of hepatic Gcgr signaling (21, 66). The long term safety of activating signaling 

pathways that promote increased islet cell proliferation has not been defined, 

however it is worth noting that rodent β-cells tend to exhibit a greater capacity 

for replication relative to human β-cells (57). Moreover, Gcgr-/- mice exhibit 

significant increases in pancreatic weight (21), likely reflecting changes in cell 

number within the exocrine pancreas, although a precise analysis of the cellular 

composition of the Gcgr -/- pancreas has not been forthcoming.     

     More recent studies have focused on the function and viability of Gcgr -/- 

hepatocytes. Exogenous administration of glucagon induces a hypolipidemic 

effect in multiple species (8, 25) and glucagon administration promotes 

mobilization of hepatic fat in lactating dairy cows (55). Consistent with these 

findings fasted Gcgr-/- mice exhibit significant defects in lipid synthesis, 

secretion, and oxidation (46), and fail to upregulate a gene expression program 

promoting lipid oxidation. Moreover glucagon exerts multiple hypolipidemic 

actions directly on hepatocytes, in part through a PPARα-dependent pathway. 

Furthermore high fat feeding of Gcgr -/- mice was associated with accelerated 

development of steatosis in some (46), but not all studies (13). These findings 

imply that a threshold level of Gcgr signaling is required for hepatocytes to 

regulate synthesis, secretion and oxidation of lipids, and marked attenuation of 

Gcgr signaling would be predicted to be associated with an increased risk of 

dyslipidemia and fatty liver.  
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    Complementary studies have examined the role of the Gcgr as a determinant 

of hepatocyte viability. The class 2 family of G protein coupled receptors 

contains several members, notably the GIPR, GLP-1R, and GLP-2R that have 

been linked to control of cell survival. For example, increased GLP-1R 

signaling reduces β-cell death both in cell culture studies in vitro and in 

multiple preclinical studies in vivo (11, 41), whereas genetic disruption of the 

Glp1r is associated with enhanced susceptibility to apoptotic injury (41). 

Sinclair and colleagues demonstrated that glucagon administration exerted 

cytoprotective actions for hepatocytes cultured in vitro, or following glucagon 

administration to mice in vivo. Conversely, Gcgr-/- mice exhibit significantly 

enhanced susceptibility to experimental liver injury, either following exogenous 

administration of the pro-apoptotic Fas ligand, or after high fat feeding (64). 

Moreover, re-introduction of the Gcgr in Gcgr -/- mice by adenoviral gene 

transfer significantly attenuated the development of liver injury in vivo. These 

findings demonstrate that the Gcgr is an important regulator of hepatocellular 

survival, however the minimum level of Gcgr expression required for 

optimization of hepatocyte survival has not been determined. 

    Another aspect of Gcgr biology that requires additional attention is the ability 

of hepatocytes with reduced Gcgr signaling to mount an appropriate 

counterregulatory response to hypoglycemia. Unexpectedly, genetic elimination 

of the Gcgr augments the counter-regulatory response to hypoglycemia in Gcgr 

-/- mice (21). The finding that Gcgr -/- mice exhibit increased epinephrine-

stimulated cAMP production in liver membranes may contribute to the 

maintenance of an appropriate counter-regulatory response in the absence of 

glucagon action. Nevertheless, more detailed studies are required that examine 

the relationship between reduced Gcgr signaling and the counter-regulatory 

response to hypoglycemia in human subjects. 

 

Summary: 

 

The central importance of glucagon action for regulation of hepatic glucose 

production, taken together with considerable pre-clinical and clinical evidence 

documenting the contribution of dysregulated glucagon secretion to the 
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pathophysiology of diabetic hyperglycemia, makes the Gcgr a logical target for 

the treatment of T2D. Moreover, compelling data from preclinical studies 

illustrates the therapeutic potential of Gcgr antagonists or molecules targeting 

the expression of the Gcgr. Nevertheless, the Gcgr -/- mouse exhibits several 

unexpected phenotypes, namely α-cell hyperplasia, and increased mass of the 

pancreas, that complicate ascertainment of the risk:benefit ratio for marked 

inhibition of Gcgr signaling. Moreover, the demonstration that complete 

reduction of Gcgr signaling increases the susceptibility to hepatosteatosis and 

hepatocellular injury raises further questions about the margin for safety in 

reduction of glucagon action. Furthermore, the central role of glucagon as the 

primary hormone responsible for the counter-regulatory response to 

hypoglycemia requires a critical evaluation of the extent to which reduction of 

glucagon action can be safely achieved in diabetic subjects treated with agents 

that may inadvertently lead to the development of hypoglycemia.. Future 

studies in normal and diabetic human subjects should identify the extent to 

which reduction of Gcgr signaling produces a compelling therapeutic benefit 

without incurring a risk of adverse events. 
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Figure 1. Structures of proglucagon (A) B) Tissue specific post-translational processing of 
proglucagon  in the pancreas gives glicentin-related polypeptide (GRPP), glucagon, 
Intervening peptide-1 (IP-1) and Major proglucagon fragment (MPGF), whereas glicentin, 
oxyntomodulin (OXM), intervening peptide (IP-2), GLP-1 and GLP-2 are liberated from the 
brain and the intestine. S= signal peptide 

 

Figure 2. Glucagon action in hepatic and extra-hepatic tissues. The actions of glucagon are 
well studied in the liver (solid grey arrow). The actions of glucagon in extra hepatic tissues 
including, kidney, GI tract, pancreas, adipose tissue, cardiovascular system and the central 
nervous system are less extensively defined (dashed grey arrow). 
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Table 1. 
 
Comparison of phenotypes in Gcgr-/- (increased GLP-1 action) versus Glp1r-/- mice 
(lack of GLP-1 action) 
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