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■ Abstract Type 2 diabetes is characterized by hyperglycemia resulting from in-
sulin resistance in the setting of inadequate β-cell compensation. Currently available
therapeutic agents lower blood glucose through multiple mechanisms but do not directly
reverse the decline in β-cell mass. Glucagon-like peptide-1 (GLP-1) receptor agonists,
exemplified by Exenatide (exendin-4), not only acutely lower blood glucose but also
engage signaling pathways in the islet β-cell that lead to stimulation of β-cell repli-
cation and inhibition of β-cell apoptosis. Similarly, glucose-dependent insulinotropic
polypeptide (GIP) receptor activation stimulates insulin secretion, enhances β-cell
proliferation, and reduces apoptosis. Moreover, potentiation of the endogenous post-
prandial levels of GLP-1 and GIP via inhibition of dipeptidyl peptidase-IV (DPP-IV)
also expands β-cell mass via related mechanisms. The thiazolidinediones (TZDs) en-
hance insulin sensitivity, reduce blood glucose levels, and also preserve β-cell mass,
although it remains unclear whether TZDs affect β-cell mass via direct mechanisms.
Complementary approaches to regeneration of β-cell mass involve combinations of
factors, exemplified by epidermal growth factor and gastrin, which promote islet neo-
genesis and ameliorate diabetes in rodent studies. Considerable preclinical data support
the concept that one or more of these therapeutic approaches, alone or in combination,
may potentially reverse the decline in β-cell mass that is characteristic of the natural
history of type 2 diabetes.

INTRODUCTION

Type 2 diabetes, also known as non-insulin-dependent diabetes mellitus, accounts
for >90% of diabetes worldwide. It is characterized by impaired insulin action
(insulin resistance) in peripheral tissues, principally muscle, adipose tissue, and
liver, in association with a deficient β-cell insulin-secretory response to glucose.
The pathogenesis of type 2 diabetes involves a combination of genetic and envi-
ronmental/lifestyle factors and is frequently associated with obesity (1). Patients
with type 2 diabetes have an increased risk of developing both microvascular and
macrovascular disease and associated complications, including nephropathy, neu-
ropathy, retinopathy, and cardiovascular disease. The global incidence of type 2
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diabetes has been increasing steadily in the past several years, partly because of
an increased prevalence of obesity, a more sedentary lifestyle, and a rise in the
average age of the general population (2). There has also been a significant rise in
the incidence of obesity and type 2 diabetes among children and adolescents (3).
Thus, type 2 diabetes is now a major public health problem that places a severe
economic burden on health care systems.

Traditional medications for type 2 diabetes, including insulin, sulfonylureas, gli-
tinides, acarbose, metformin, and thiazolidinediones, lower blood glucose through
diverse mechanisms of action. Studies such as the United Kingdom Prospective
Diabetes Study (UKPDS) clearly illustrate that better glycemic control achieved
with some of these drugs can significantly reduce the development of diabetes-
associated secondary complications (4). However, many of the oral hypoglycemic
agents lose their efficacy over time, resulting in progressive deterioration in β-cell
function and loss of glycemic control.

The reasons why current antidiabetic agents become less effective over time
are not well understood, but they appear to include progressive loss of β-cell
mass. Autopsy studies demonstrate that β-cell mass is decreased in type 2 dia-
betes despite a normal capacity for β-cell replication and neogenesis (5–8). β-cell
mass is governed by a combination of factors: (a) replication of existing β-cells,
(b) differentiation of new β-cells from ductal and extraislet precursor cells (neo-
genesis), and (c) β-cell apoptosis (9–11). Reduced β-cell mass has been observed
in both obese and lean type 2 diabetic humans (5) and in diabetic rodent models
of genetic and experimental diabetes (12). Commonly observed in both human
and rodent studies of type 2 diabetes is an increase in β-cell apoptosis (5, 13, 14);
the mechanisms responsible include chronic hyperglycemia, dyslipidemia, endo-
plasmic reticulum and oxidative stress, islet amyloid deposition, and actions of
inflammatory cytokines (reviewed in 15, 16).

Medications currently used to treat type 2 diabetes cannot prevent β-cell death
or re-establish β-cell mass. Moreover, short-term studies demonstrate that sulfony-
lureas can induce apoptosis in rodent β-cells (17) or cultured human islets (18).
Thus, sulfonylurea therapy could theoretically exacerbate β-cell loss in subjects
with type 2 diabetes. Consequently, there has been intense interest in the develop-
ment of therapeutic agents that preserve or restore functional β-cell mass. Several
agents with the potential to inhibit β-cell apoptosis and/or increase β-cell mass
have been identified in preclinical studies (Figure 1, Table 1).

GLP-1 RECEPTOR AGONISTS

Glucagon-like peptide-1 (GLP-1), a potent glucoregulatory hormone, is produced
in enteroendocrine L-cells by tissue-specific post-translational processing of
proglucagon and is released into the circulation in response to nutrient inges-
tion (19). GLP-1 regulates glucose homeostasis by stimulating glucose-dependent
insulin secretion and biosynthesis, and by suppressing glucagon secretion, gas-
tric emptying, and appetite (20). GLP-1 may also enhance insulin-independent
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TABLE 1 Agents that increase or preserve β-cell mass

Stimulators of β-cell proliferation and/or
neogenesis Inhibitors of β-cell death

GLP-1 GLP-1

GIP GIP

DPP-IV inhibitors DPP-IV inhibitors

Epidermal growth factor/gastrin Growth hormone

TZDs Hepatocyte growth factor

Growth hormone Insulin-like growth factors

Hepatocyte growth factor Parathyroid hormone-related peptide

Human placental lactogen

INGAP

Insulin-like growth factors

Parathyroid hormone-related peptide

Prolactin

Keratinocyte growth factor

Betacellulin

Abbreviations: GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic polypeptide; DPP-IV,
dipeptidyl-peptidase-IV; TZDs, thiazolidinediones; INGAP, islet neogenesis-associated protein.

glucose disposal in peripheral tissues (21–23). Activation of GLP-1 receptor
(GLP-1R) signaling also increases β-cell mass by stimulating β-cell prolifera-
tion and neogenesis and inhibiting β-cell apoptosis (24, 57).

The actions of GLP-1 have generated a great deal of interest in using this peptide
for the treatment of type 2 diabetes (23). However, the therapeutic potential of
native GLP-1 is limited by its very short plasma half-life (∼90 s), which is due
to rapid inactivation by the ubiquitous protease dipeptidyl peptidase-IV (DPP-IV)
and renal clearance (25–29). Consequently, long-acting, DPP-IV-resistant GLP-
1R agonists have been developed for clinical use, including exendin-4 (Exenatide)
and the fatty-acyl-derivatized GLP-1 analogue liraglutide. These agents are GLP-1
mimetics that bind the GLP-1R with similar affinity and elicit biological actions
identical to those of native GLP-1, but they resist DPP-IV-mediated inactivation and
renal clearance and thus can sustain protracted activation of the GLP-1R (30, 31).

The ability of GLP-1R agonists to expand β-cell mass via stimulation of β-cell
growth and prevention of β-cell death has been demonstrated in studies using islet
and β-cell primary cultures or cell lines, as well as in experiments using normal
and diabetic rodents. GLP-1 activates the expression of immediate early genes in
rat insulinoma-derived, insulin-secreting (INS-1) cells (32, 33), and treatment of
pancreatic exocrine cells or rat pancreatic ductal cell lines with GLP-1 or exendin-
4 promotes their conversion into islet-like cells that produce and secrete insulin
in a glucose-dependent manner (34, 35). GLP-1, exendin-4 and liraglutide (36)
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inhibit apoptosis in primary rodent islets, purified β-cells, and islet cell lines
that have been exposed to cytotoxic agents (37–40). GLP-1R agonists improve
glucose tolerance, enhance β-cell proliferation and neogenesis, and inhibit β-cell
apoptosis in rodent models of diabetes, leading to increased β-cell mass (38, 41–
48). Moreover, administration of exendin-4 during the prediabetic neonatal period
prevents adult-onset diabetes in rats following experimentally induced intrauterine
growth retardation (49). Similarly, exendin-4 increases β-cell mass and delays the
onset of diabetes in db/db mice and Goto-Kakizaki rats (48, 50). Of direct relevance
to the potential use of these agents for the treatment of type 2 diabetes in humans,
exendin-4 promotes the differentiation of human fetal islet and pancreatic ductal
cells into cells that produce and secrete insulin in a glucose-dependent manner (35,
51, 52), and GLP-1 preserves morphology, improves glucose-stimulated insulin
secretion, and inhibits apoptosis in freshly isolated human islets (39, 53).

The physiological importance of the known GLP-1R for the proliferative,
neogenic, and antiapoptotic actions of GLP-1 is exemplified by studies employing
the GLP-1R antagonist exendin (9–39), or experiments in mice with targeted ge-
netic inactivation of the GLP-1R gene (GLP-1R−/−). Exendin (9–39) blocks GLP-
1R agonist–mediated differentiation of human pancreatic ductal cells (52) and
inhibits the antiapoptotic effects of GLP-1 in mouse insulinoma-derived (MIN6)
β-cells (37). Although treatment of wild-type mice with exendin (9–39) did not
impair the islet regenerative response to partial pancreatectomy, GLP-1R−/− mice
exhibited defective regeneration of β-cell mass and deterioration of glucose tol-
erance in the same experimental paradigm (54). Furthermore, GLP-1R−/− mice
display increased susceptibility to islet apoptosis and worsening hyperglycemia
following administration of the β-cell toxin streptozotocin (38). Hence it appears
that endogenous GLP-1R signaling is essential for β-cell cytoprotection in vivo.

How does GLP-1R activation lead to increased β-cell mass? The molecu-
lar mechanisms are diverse and involve multiple signal transduction pathways
downstream of the GLP-1R (Figure 2) (24, 55). The GLP-1R-dependent signaling
pathways responsible for the proliferative, neogenic, and antiapoptotic actions of
GLP-1R agonists have been examined using human or rodent primary islets, ro-
dent β-cell lines, and diabetic mice (reviewed in 55–57). A common element in
all of these GLP-1R-dependent pathways is activation of pancreatic and duodenal
homeobox factor-1 (PDX-1), a transcription factor essential for pancreas devel-
opment and β-cell function (34, 35, 43, 44, 51, 52, 58). The proliferative effects
of GLP-1R agonists may also be mediated by transactivation of the epidermal
growth factor receptor (EGFR), which leads to increases in phosphatidylinositol-3
kinase (PI-3K) and activation of protein kinase C (PKC) ζ (59) and/or Akt-protein
kinase B (PKB) (60). The precise mechanisms involved in GLP-1-dependent
β-cell differentiation/neogenesis are poorly defined but may involve activation
of PKC and mitogen-activated protein kinase (MAPK) (34). More recent studies
have demonstrated that exendin-4 mediates β-cell regeneration in streptozotocin-
treated mice by mechanisms that involve upregulating insulin receptor substrate-2
(IRS-2) expression and promoting nuclear exclusion of the transcription factor
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Foxo 1 [a key negative regulator of β-cell growth (61)], thereby increasing PDX-1
expression (58).

The antiapoptotic effects of GLP-1R agonists are associated with reductions in
the levels of proapoptotic proteins such as active caspase 3 and poly-ADP-ribose
polymerase (PARP) cleavage, as well as upregulation of prosurvival factors includ-
ing Bcl-2, Bcl-xL, and inhibitor of apoptosis protein-2 (IAP-2) (37, 39, 47, 48,
62). GLP-1R-dependent inhibition of β-cell apoptosis is coupled to (a) activation
of cAMP/protein kinase A (PKA) with subsequent phosphorylation and activa-
tion of cAMP response element binding protein (CREB), leading to activation of
IRS-2 and induction of the Akt-PKB growth and survival pathway (48, 63), and
(b) activation of Akt-PKB and enhancement of the DNA binding activity of its
downstream target, nuclear factor-κB (NFκB), a transcription factor that plays an
important role in the regulation of apoptosis (39).

Clinical studies have demonstrated that GLP-1R agonists can enhance glucose-
stimulated insulin secretion, reduce fasting and postprandial blood glucose levels,
promote satiety and weight loss, and lower hemoglobin A1c (HbA1c) and plasma
levels of free fatty acids (23, 64–68). Hence, GLP1-R agonists may preserve
β-cell mass via both direct and indirect actions. Direct activation of GLP-1Rs on
pancreatic β-cells or islet precursors can stimulate signal transduction pathways
that modify β-cell proliferation, neogenesis, and apoptosis. Chronic treatment with
GLP-1R agonists improves metabolic control in type 2 diabetic patients (69–71) by
reducing hyperglycemia and levels of circulating free fatty acids, thereby indirectly
protecting β-cells from the deleterious effects of high glucose and lipid levels.

GIP

Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino-acid hormone
released from intestinal K-cells in response to nutrient ingestion. Like GLP-1,
it enhances glucose-stimulated insulin secretion and biosynthesis and promotes
β-cell proliferation and survival (72). Most studies examining the proliferative
and antiapoptotic actions of GIP have employed either heterologous cells trans-
fected with the GIP receptor (GIPR) or rodent β-cell lines. Important effectors
of GIP action include cAMP/PKA, PKA/CREB, MAPK, and PI-3K activation
of Akt-PKB (73–76). In comparison, relatively little is known about the signal
transduction pathways that modify GIPR-dependent β-cell growth and survival in
vivo. Systemic administration of GIP significantly reduced islet cell apoptosis in
diabetic rats (77). GIP inhibits β-cell apoptosis by activation of PI-3K/Akt-PKB
and subsequent phosphorylation of Foxo1. Phosphorylated Foxo1 is exported from
the nucleus and sequesters within the cytoplasm following GIPR activation, re-
sulting in reduced expression of the proapoptotic bax gene and upregulation of the
antiapoptotic bcl-2 gene (77).

Although GIP appears to be a promising candidate for the treatment of type 2
diabetes, humans with type 2 diabetes are relatively resistant to the insulinotropic
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effects of exogenous GIP administration (78, 79). Preclinical data suggest that
continuous exposure to GIP and/or hyperglycemia promotes downregulation of
GIPR expression in vivo (80). However, improvement of glycemic control follow-
ing four weeks of treatment with a sulfonylurea enhanced the acute insulinotropic
response to GIP in subjects with type 2 diabetes (81). Thus, the clinical potential
of GIP or long-acting GIPR agonists requires further study.

DPP-IV INHIBITORS

Dipeptidyl peptidase-IV (DPP-IV) is a ubiquitously expressed proteolytic enzyme
that specifically cleaves dipeptides from the amino terminus of oligopeptides or
proteins that contain an alanine or proline residue in position two (26). DPP-IV is
a critical determinant of GLP-1 and GIP inactivation in vivo (25). Both GLP-1 and
GIP have an alanine residue in the penultimate position and are rapidly inactivated
by DPP-IV, so that, in humans, the plasma half-life for GLP-1 is ∼2 min and that
of GIP is ∼5 min (82, 83). Because of the clinical potential of GLP-1 and GIP for
the treatment of type 2 diabetes, DPP-IV inhibitors have been developed to prevent
proteolytic inactivation of endogenous GLP-1 and GIP. Several orally active DPP-
IV inhibitors are currently being evaluated for the treatment of type 2 diabetes (84).

Numerous preclinical studies with both normal and diabetic animals clearly
demonstrate that pharmacological inhibition of DPP-IV activity increases endoge-
nous plasma levels of intact, biologically active GLP-1 and GIP, enhances insulin
secretion, reduces peripheral insulin resistance, and improves glucose tolerance
(85–93). Moreover, mice with a targeted disruption of the DPP-IV gene exhibit im-
proved glucose tolerance in association with increased levels of plasma insulin and
bioactive GIP and GLP-1 (94). Human studies are fewer, but they have established
that treatment with DPP-IV inhibitors improves β-cell function, reduces fasting
and postprandial blood glucose levels, and decreases HbA1c values in subjects with
type 2 diabetes (95–97).

In addition to GLP-1 and GIP, regulatory peptides, neuropeptides, and
chemokines are potential substrates for the proteolytic actions of DPP-IV (98).
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that stim-
ulates glucose-dependent insulin secretion and can reduce blood glucose levels in
diabetic animals (99). Transgenic overexpression of PACAP in pancreatic β-cells
is associated with increased β-cell proliferation in mice following streptozotocin
administration (100). This suggests that PACAP may also play a role in enhanc-
ing β-cell mass. Furthermore, inhibition of DPP-IV activity in mice potentiates
the insulin-secretory response to exogenous PACAP (101). However, DPP-IV in-
hibitors do not lower blood glucose levels following acute administration in mice
that lack receptors for both GLP-1 and GIP, suggesting that DPP-IV inhibitors
mediate their glucose-lowering actions primarily through GLP-1- and GIP-
dependent actions (102).

There is active interest in determining whether treatment with DPP-IV inhibitors
will increase β-cell mass. Twice-daily administration of the DPP-IV inhibitor
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P32/98 for seven days increased levels of bioactive GLP-1, improved glucose
tolerance, and enhanced pancreatic insulin content while stimulating both islet
neogenesis and β-cell survival in diabetic rats (103). Treatment of mice for eight
weeks with the DPP-IV inhibitor NVP DPP728 improved β-cell function and
reduced islet size relative to high-fat-fed control mice (104). Conversely, mice
deficient in DPP-IV are resistant to streptozotocin-induced reductions in β-cell
mass (105). Taken together, the data imply a role for long-term DPP-IV inhibition
in the regulation of β-cell mass in type 2 diabetes.

GASTRIN AND EGF

Gastrin is a peptide hormone that stimulates gastric acid secretion and neuroen-
docrine cell proliferation in the gastric mucosa of adult animals (106). During fetal
development, gastrin and its receptors are expressed primarily in the developing
pancreas at a time when islet precursor cells are undergoing active proliferation
and differentiation to form new islets (107, 108), which suggests a potential role for
gastrin in islet neogenesis. Studies in the regenerating pancreas of duct-ligated rats
revealed that gastrin stimulates β-cell neogenesis and expansion of β-cell mass
from transdifferentiated, but not normal, exocrine pancreas tissue (109). Analyses
of epidermal growth factor (EGF) actions demonstrate that it may activate the
proliferation of ductal islet precursor cells (110, 111). Early evidence that a com-
bination of gastrin and EGF could stimulate islet neogenesis and increase β-cell
mass emerged from studies using single- or double-transgenic mice that express
transforming growth factor-α (TGF-α), an EGFR ligand, and/or gastrin under the
control of the insulin promoter (112). In gastrin transgenic mice, pancreatic ductal
tissue and islet mass are normal, whereas in TGF-α transgenic mice, the number
of insulin-expressing pancreatic ductal cells is increased but islet mass is normal.
However, TGF-α/gastrin double-transgenic mice exhibit significantly increased
β-cell mass. These observations formed the basis for the hypothesis that gastrin
and EGFR ligands act synergistically to stimulate islet growth, with EGFR ligands
initiating a program of islet differentiation that is completed by gastrin (112).

The therapeutic potential of combined gastrin and EGF was illustrated by stud-
ies in which gastrin/EGF reduced hyperglycemia, induced islet regeneration, and
increased β-cell mass in rodent models of genetic or chemically induced insulin-
dependent (type 1) diabetes, whereas gastrin or EGF alone were not effective
(113, 114, 114a). More recent studies have shown that gastrin/EGF can also in-
crease β-cell mass in islet preparations derived from adult human pancreatic tissue
(115). Gastrin/EGF increased the number of β-cells in cultured human islets, and
this effect was sustained for up to four weeks after removal of gastrin/EGF from
the culture medium. Pancreatic ductal cells are consistently present in human islet
preparations (116), and the increased β-cell number was attributed to the activation
of β-cell neogenesis mediated by EGF stimulation of ductal cell proliferation and
gastrin-dependent increases in ductal cell PDX-1 expression and differentiation
(115). Gastrin/EGF also increased functional β-cell mass following transplantation
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of human islets into diabetic mice (115). The ability of gastrin/EGF therapy to in-
duce β-cell neogenesis from pancreatic ductal cells has potential implications for
new approaches to the treatment of type 1 and type 2 diabetes and is currently be-
ing evaluated in early-stage clinical trials. Whether cholecystokinin (CCK), acting
presumably via the CCK-B receptor, will exert similar trophic effects on pancreatic
islet growth is also under active investigation (117).

THIAZOLIDINEDIONES

The thiazolidinediones (TZDs) are ligands for peroxisome proliferator-activated
receptor-γ (PPARγ), a nuclear hormone receptor that functions as a transcription
factor and regulates the expression of genes that modify cellular differentiation
and glucose and lipid metabolism (118). TZDs enhance insulin sensitivity in pe-
ripheral tissues, lower blood glucose, exert anti-inflammatory effects, and improve
metabolic control in type 2 diabetic individuals (119, 120).

TZDs have also been shown to enhance β-cell function in diabetic humans
and rodents and to preserve β-cell mass and delay the onset of hyperglycemia in
rodent models of type 2 diabetes (121–124). The TZD rosiglitazone prevented the
development of diabetes in Zucker diabetic fatty rats when administered during
the prediabetic period (122). Rosiglitazone also inhibited the well-characterized
progressive loss ofβ-cell mass in these animals by maintainingβ-cell proliferation,
thereby preventing increases in overall net β-cell death (122). In human islets,
the TZD pioglitazone inhibited hyperglycemia- or cytokine-induced apoptosis by
blocking activation of the NFκB pathway, a major proapoptotic signal transduction
pathway in human β-cells (125). Thus, in addition to improving peripheral insulin
sensitivity, TZDs can also preserve β-cell mass in the setting of type 2 diabetes or
β-cell injury. However, whether TZDs mediate these effects directly, via activation
of pancreatic β-cell PPARγ receptors, or indirectly, by normalizing blood glucose
levels and improving metabolic parameters, is not known. Moreover, whether
TZD-mediated enhancement of β-cell function and preservation of β-cell mass
are related to reduced β-cell secretory demand as a consequence of improved
insulin sensitivity remains to be determined. Longitudinal studies of the effects of
TZDs on β-cell function in human subjects are under way.

MISCELLANEOUS PEPTIDE GROWTH FACTORS

Several peptides and growth factors promote expansion of β-cell mass in preclin-
ical studies via effects on β-cell proliferation and/or apoptosis, or via stimulation
of ductal proliferation and neogenesis (Table 1). Agents that act primarily on
islet cells include insulin-like growth factor-1 (126), hepatocyte growth factor
(127, 128), human placental lactogen (129), and parathyroid hormone-related
peptide (130).

Treatment of rodents with keratinocyte growth factor induces pancreatic duc-
tular proliferation and increases the number of functional insulin-secreting cells
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following transplantation of human fetal islet preparations into rats (131). Admin-
istration of synthetic peptide fragments derived from islet-neogenesis-associated
peptide (INGAP) promoted islet neogenesis in short-term studies of normal ham-
sters, and treatment of diabetic rodents with a pentadecapeptide derived from
INGAP increased β-cell mass and improved glucose homeostasis in several pre-
clinical studies (132). The molecular mechanisms activated by INGAP that result
in expansion of β-cell mass remain incompletely understood.

CONCLUSIONS

Progressive reductions in β-cell mass contribute significantly to the pathogenesis
of type 2 diabetes. A major goal of diabetes research is to restore the β-cell mass
typically lost during the natural progression of type 2 diabetes. The ability of
GLP-1R agonists, and related peptides such as GIP, to enhance β-cell survival and
stimulate β-cell growth in preclinical studies of diabetic animal models suggests
that these agents could provide a noninvasive means to preserve and/or restore
functional β-cell mass in patients with type 2 diabetes. Moreover, if these drugs
are used early in the course of the disease, they could potentially delay or even
prevent the progression to overt type 2 diabetes. However, whether these agents
will produce a sustained improvement in β-cell function following chronic therapy
in human patients with type 2 diabetes is currently not known. Long-term clinical
studies will be required to answer this question.
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Figure 1 Pancreatic targets for expansion of �-cell mass by agents in clinical trials
for the treatment of type 2 diabetes. Some evidence suggests that gastrin/epidermal
growth factor (EGF) may increase the number of functional �-cells via the process of
transdifferentiation. Glucagon-like peptide-1 receptor (GLP1-R) agonists and dipep-
tidyl peptidase-IV (DPP-IV) inhibitors exert their effects directly on islet �-cells and
possibly on the pancreatic ductal epithelium. GIP, glucose-dependent insulinotropic
polypeptide; TZDs, thiazolidinediones.
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Figure 2 Signal transduction pathways coupling GLP-1 receptor activation to
expansion of �-cell mass.
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