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Glucagon and Glucagon-Like Peptide Receptors as Drug Targets
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Abstract: Glucagon and the glucagon-like peptides are derived from a common proglucagon precursor, and regulate en-
ergy homeostasis through interaction with a family of distinct G protein coupled receptors. Three proglucagon-derived
peptides, glucagon, GLP-1, and GLP-2, play important roles in energy intake, absorption, and disposal, as elucidated
through studies utilizing peptide antagonists and receptor knockout mice. The essential role of glucagon in the control of
hepatic glucose production, taken together with data from studies employing glucagon antagonists, glucagon receptor an-
tisense oligonucleotides, and glucagon receptor knockout mice, suggest that reducing glucagon action may be a useful
strategy for the treatment of type 2 diabetes. GLP-1 secreted from gut endocrine cells controls glucose homeostasis
through glucose-dependent enhancement of b- cell function and reduction of glucagon secretion and gastric emptying.
GLP-1 administration is also associated with reduction of food intake, prevention of weight gain, and expansion of b- cell
mass through stimulation of b- cell proliferation, and prevention of apoptosis. GLP-1R agonists, as well as enzyme in-
hibitors that prevent GLP-1 degradation, are in late stage clinical trials for the treatment of type 2 diabetes. Exenatide
(Exendin-4) has been approved for the treatment of type 2 diabetes in the United States in April 2005. GLP-2 promotes
energy absorption, inhibits gastric acid secretion and gut motility, and preserves mucosal epithelial integrity through en-
hancement of crypt cell proliferation and reduction of epithelial apoptosis. A GLP-2R agonist is being evaluated in clini-
cal trials for the treatment of inflammatory bowel disease and short bowel syndrome. Taken together, the separate recep-
tors for glucagon, GLP-1, and GLP-2 represent important targets for developing novel therapeutic agents for the treatment

of disorders of energy homeostasis.

Key Words: Proglucagon, GLP-1, GLP-2, glucagon, g protein-coupled receptors, diabetes, intestinal disease, PGDP.

INTRODUCTION

The proglucagon gene encodes a large prohormone pre-
cursor, proglucagon, predominantly expressed in the endo-
crine pancreas, gut endocrine cells, and the central nervous
system. Tissue-specific post-translational processing of pro-
glucagon by prohormone convertases yields multiple bio-
logically active proglucagon-derived peptides (PGDPs) that
have attracted increasing interest due to their regulatory ac-
tions on nutrient absorption and energy homeostasis. The
principal peptide products include glucagon in the pancreatic
a-cells, and glucagon-like peptide-1 (GLP-1), glucagon-like
peptide-2 (GLP-2), glicentin, and oxyntomodulin in the in-
testinal L-cells (Fig. 1).

The primary function of glucagon is to maintain appro-
priate levels of glucose in the fasting state, and to raise
plasma glucose levels in response to hypoglycemia (for re-
view, see [1]). The other PGDPs have also been shown to
regulate energy homeostasis in a nutrient-dependent manner
via a multitude of biological actions including the regulation
of insulin and glucagon secretion, gastric emptying, acid
secretion, food intake, and intestinal epithelial integrity (for
review, see [2, 3]).

Given the diverse actions of these hormones, and the
demonstration that modulation of GLP-1 or GLP-2 action
may have therapeutic benefits in experimental models of
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diabetes and intestinal diseases, respectively, there is now
substantial interest in the development of specific peptide
and non-peptide agonists and antagonists that target the glu-
cagon-like peptide receptors. The aim of this review is to
explore the therapeutic potential of agents that modulate glu-
cagon-like peptide receptor signaling for the treatment of
human disease.

THE GLUCAGON RECEPTOR FAMILY

The receptors for glucagon, GLP-1 and GLP-2 share ex-
tensive homology and are members of the Family B (11) Glu-
cagon-Secretin G Protein-Coupled Receptor (GPCR) super-
family, which also includes receptors for secretin, glucose-
dependent insulinotropic polypeptide (GIP), vasoactive in-
testinal peptide (VIP), pituitary adenylate cyclase-activating
polypeptide (PACAP) and growth-hormone-releasing hor-
mone (GHRH) [4]. The majority of the receptor agonists in
this family are naturally occurring peptide hormones. Struc-
tural characteristics shared by this receptor family include: a
relatively long, extracellular N-terminal domain; highly con-
served cysteine residues in the extracellular domains which
likely form disulfide bridges; an amino acid signal peptide
directing membrane localization; and several N-linked gly-
cosylation sites [5, 6].

Several studies have identified interactions between pep-
tide ligands and the N-terminus, the extracellular loops, and
the transmembrane helices of the Family B GPCRs (for re-
view, see [6]). Studies using site-directed mutagenesis and
the creation of chimeric receptors have demonstrated that the
N-termini of receptors within this family, specifically the
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glucagon, GLP-1, VIP, and secretin receptors, recognize and
bind the C-terminus of their cognate peptide ligands, while
specific residues in the extracellular loops and the borders of
the transmembrane helices bind the N-terminus of the ligand
[7-12]. This indicates that ligand binding to this family of
receptors likely involves an intricate and precise interaction
between specific receptor/ligand residues and the require-
ment of intact receptor secondary structure, potentially ex-
plaining the high specificity and affinity of ligand binding.

All of the family members activate adenylyl cyclase
through regulation of G ,; however some Family B receptors
also couple to other G-proteins. Many of the receptors in this
family exhibit some degree of agonist-independent (consti-
tutive) activity [5]. While glucagon and the glucagon-like
peptides are encoded by a single gene (proglucagon) (Fig. 1),
the genes for each of their receptors evolved separately (For
review, see [4]). Although the receptors share considerable
sequence identity, differential cellular localization and sig-
naling properties allows their cognate peptide hormone ago-
nists to regulate a diverse array of biological functions.

Glucagon

Glucagon is a 29 amino acid peptide synthesized mainly
in pancreatic a-cells following cleavage of proglucagon by
prohormone convertase 2 [13]. Glucagon is the principal
counter-regulatory hormone that opposes insulin action
leading to coordinate bihormonal control of glucose homeo-
stasis. Through a variety of mechanisms, including stimula-
tion of hepatic glycogenolysis and gluconeogenesis, gluca-
gon acts to increase the level of available glucose by mobi-
lizing available energy stores. Glucagon also inhibits glyco-
gen synthesis and glycolysis in the liver. Glucagon excess, in
the setting of insulin resistance and/or deficiency, contributes
to the development of hyperglycemia in human subjects with
diabetes mellitus (for review, see [1]).

Glucagon elicits it metabolic effects following binding to
a highly specific G protein-coupled receptor. The glucagon
receptor is widely expressed in many tissues, including liver,
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brain, pancreas, heart, kidney, and the smooth muscle of the
gastrointestinal tract and peripheral vasculature (for a more
in-depth review, see [14]). Consistent with this diverse re-
ceptor localization, glucagon has been used to treat condi-
tions such as refractory bradycardia and cardiogenic shock
due to its inotropic and chronotropic properties in the heart
[15]. Glucagon acts as a vasodilator at supraphysiological
concentrations [16] and exogenous glucagon administration
can increase glomerular filtration rate, regulate ion transport,
and electrolyte excretion in the kidney [17, 18]. Glucagon is
also used as a spasmolytic agent to modulate motility in the
gastrointestinal tract during radiological examinations [19].
Although glucagon may stimulate lipolysis in animals [20-
23], evidence for the lipolytic effect of glucagon in humans
is controversial [24, 25]. Irrespective of the numerous
physiological targets of glucagon action, the therapeutic po-
tential of modulating glucagon receptor activity has focused
mainly on its role in glucose homeostasis. Although gluca-
gon receptor activation clearly produces intriguing effects on
blood pressure control and food intake, the therapeutic po-
tential in modulating glucagon receptor action more likely
resides in the blockade of glucagon receptor signaling for the
treatment of diabetes.

The glucose-liberating actions of glucagon are thought to
be regulated mainly by activation of adenylyl cyclase, in-
creased levels of intracellular cAMP, and activation of pro-
tein kinase A (PKA). Glucagon enhances the activity of key
gluconeogenic enzymes such as phosphoenolpyruvate car-
boxykinase (PEPCK) and the catalytic subunit glucose-6-
phosphatase (G-6-Pase) via induction of cyclic-AMP re-
sponse element binding protein (CREB) and peroxisome
proliferator activated receptor gamma coactivator-1 (PGC-1)
[26, 27]. Although the number of glucagon receptors in dia-
betic patients may be reduced, the ability of glucagon to
stimulate cAMP production remains unchanged [28]. The
hyperglucagonemia associated with diabetes most likely re-
sults in increased glucagon receptor signaling and subse-
quent elevation of plasma glucose in the absence of suffi-
cient counter-regulatory insulin signaling. Conversely, al-

GRPP Glucagon

GLP-1

GLP-2

-: Glicentin

Major Proglucagon Fragment (MPGF)

.Oxyntomodulin -

Products of PC 2 cleavage in the pancreas

U
L1

Products of PC 1/3 cleavage in the intestine and brain

Fig. (1). Proteolytic Cleavage of the Proglucagon Hormone. Proglucagon encodes multiple biologically active peptides that are produced
following enzymatic cleavage by prohormone convertases (PC). PC2 cleavage yields glicentin-related pancreatic polypeptide (GRPP), glu-
cagon, intervening peptide 1 (IP1), and the major proglucagon fragment (MPGF) in the pancreatic a-cells and the central nervous system,
while PC1/3 enzymatic activity produces glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glicentin, oxyntomodulin, and

intervening peptide 2 (IP2) in the intestine and brain.
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though most diabetic subjects with hypoglycemia maintain a
preserved therapeutic response to exogenous glucagon ad-
ministration, endogenous glucagon secretion frequently be-
comes defective in patients with diabetes following repeated
episodes of hypoglycemia [29-31].

Oxyntomodulin

Oxyntomodulin is a 37 amino acid proglucagon-derived
peptide that contains the sequence of glucagon and a car-
boxyterminal 8 amino acid extension, including the sequence
of intervening peptide-1 (Fig. 1). Although oxyntomodulin
regulates gastric acid secretion, a separate oxyntomodulin
receptor has not been identified. Administration of oxynto-
modulin, either via intracerebroventricular or peripheral in-
jection, reduces food intake and produces weight loss in ro-
dent studies [32-35]. Although oxyntomodulin is capable of
interacting as an agonist at both the glucagon and GLP-1
receptors [35], the anorectic actions of oxyntomodulin are
blocked by the GLP-1 receptor antagonist exendin (9-39)
[32]. Similarly, oxyntomodulin significantly reduces food
intake in GCGR™ but not GLP-1R™ mice, hence the gluca-
gon receptor is not required for transduction of oxynto-
modulin actions on food intake [35]. Intriguingly, short term
infusion studies demonstrate that oxyntomodulin also re-
duces appetite and energy intake in normal human subjects
[36], and oxyntomodulin produces weight loss following
sustained administration in human subjects™.

Therapeutic Potential of Targeting the Glucagon Recep-
tor

Treatment of Diabetes

The ratio of insulin to glucagon is normally tightly regu-
lated. In healthy human subjects, hyperglycemia following
nutrient absorption stimulates insulin release and decreases
glucagon levels, while hypoglycemia inhibits insulin and
stimulates glucagon secretion. In patients with type 2 diabe-
tes, insulin secretion is often delayed and reduced, together
with defects in insulin action, while glucagon levels remain
unchanged or elevated [1, 37]. In type 1 diabetes, where
post-prandial insulin release is virtually absent, hypergluca-
gonemia may be attributed largely to the lack of insulin’s
negative feedback on glucagon release from islet a- cells
[38]. Persistently elevated levels of glucagon or increased
glucagon/insulin ratios are often observed in diabetic hu-
mans and in animal models of diabetes [39, 40], and most
likely play a substantial role in the development of hypergly-
cemia, the metabolic signature of both type 1 and type 2 dia-
betes [38, 41, 42].

Although the unopposed actions of glucagon in diabetic
subjects have been described for years, until recently, there
has been little experimental focus on determining the poten-
tial role of glucagon antagonists in the treatment of experi-
mental diabetes. A glucagon analogue, [I-N alpha-trinitro-
phenylhistidine, 12-homoarginine]-glucagon (THG), was
demonstrated to have antagonistic properties at the hepatic
glucagon receptor in vitro. Bolus injections and long-term

“Wynne K, Park AJ, Small CG, Patterson M, Ellis SM, Murphy KG, et al. Subcutane-
ous oxyntomodulin reduces body weight in overweight and obese subject: a double-
blind, randomized, controlled trial. Diabetes 2005; 54(8): 2390-5.
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infusion of the peptide in vivo (diabetic rats) decreased blood
glucose levels by up to 65% in the absence of exogenous
insulin treatment [43]. These observations suggested that
glucagon receptor antagonists might be safe and effective
therapeutic agents for the treatment of diabetes. Neverthe-
less, in the two decades following the publication of these
findings, only a handful of additional studies described char-
acterization of peptide antagonists for the glucagon receptor
[44-50]. Although many of these glucagon antagonists re-
duced the capacity of native glucagon to lower hepatic
CAMP generation in vitro, their usefulness in rodent models
of diabetes appeared limited. Concurrently, efforts were
made to decrease circulating levels of glucagon with highly
specific glucagon-neutralizing antibodies. Infusion of these
antibodies into rodent models of diabetes effectively reduced
free glucagon levels and decreased blood glucose [51-53].
These studies provided proof of concept that peptide-based
glucagon antagonists and/or neutralizing antibodies directed
against glucagon may have therapeutic value for the treat-
ment of diabetes.

More recently, focus has shifted to the development of
non-peptide glucagon receptor antagonists (for review, see
[54]). The first non-peptide competitive human glucagon
receptor antagonist, 2-(benzimidazol-2-ylthio)-1-(3, 4-
dihydroxyphenyl)-1-ethan one, NNC 92-1687 (2), was
shown to specifically bind to the glucagon receptor, and in-
hibit glucagon-stimulated cAMP accumulation in cells ex-
pressing the glucagon receptor [55]. Several competitive and
non-competitive glucagon receptor antagonists have been
developed including L-168, 049 (Merck) [56]; the triarylimi-
dazoles (Merck) [57]; the alkylidene hydrazides - Compound
27 (Agouron/Novo Nordisk) [58], Compound 28 [4-hydroxy-
3-cyanobenzoic acid (4-isopropylbenzyloxy-3, 5-dimethoxy-
methylene) hydrazide] (Anadys/Novo Norkisk) [59], and
NNC 25-2504 (Novo Nordisk) [60]; Bay 27-9955 (Bayer)
[61]; 5-Hydroxyalkyl-4-phenylpyridines (Bayer) [62]; and
the urea-based compounds (Novo Nordisk) including the
biaryl amides (Abbott) [63] (For chemical structures, see
Fig. 2). Skyrin, a fungal bisanthroquinone, was found to spe-
cifically and non-competitively inhibit glucagon receptor
signaling in primary hepatocytes (i.e. independent of binding
to the glucagon receptor) [64]. All of these small molecule
glucagon receptor antagonists were able to significantly in-
hibit glucagon-induced cAMP accumulation in vitro, and a
few antagonists have also shown efficacy in lowering blood
glucose in rodent models [43, 58, 59, 63]. Bay 27-9955, has
been administered to human subjects and attenuated the de-
velopment of glucagon-induced hyperglycemia in a short-
term study over several hours [61]. The advantage of these
synthetic chemical entities includes their oral bioavailability,
cheaper cost of manufacturing, together with the reduced
likelihood of inducing an immune response compared to
peptide-based antagonists.

Mice lacking a functional glucagon receptor have been
generated (GCGR™) and exhibit a number of interesting
phenotypes. These mice have elevated levels of circulating
glucagon with no changes in insulin levels, but are otherwise
viable and healthy, and exhibit mild fasting hypoglycemia
and improved glucose tolerance [65, 66]. GCGR™ mice also
have an increase in pancreatic weight, due in part to signifi-
cant a-cell hyperplasia. GCGR™ mice display reduced adi-
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Fig. (2). Chemical Structures of Small Molecule Glucagon Receptor Antagonists. The published chemical structures/backbones of mole-
cules currently being investigated as glucagon receptor antagonists. Compound 27, compound 28, and NNC 25-2504 are all alkylidene hy-
drazides. Each compound inhibits glucagon induced cAMP production by acting in a competitive or non-competitive manner on the gluca-
gon receptor. All structures have been reproduced with permission from the publishers.

posity and leptin levels, but have a normal body weight, food
intake, and energy expenditure [66]. Mice engineered to ex-
press the human glucagon receptor, were recently used to
study the binding and efficacy of two glucagon-receptor an-
tagonists, one peptide-based and one small molecule, in vivo.
It was determined that the majority of specific glucagon
binding was localized to the liver, and that each of the an-
tagonists displaced 70-80% of the radiolabeled glucagon
from the hepatic human glucagon receptor in vivo and effec-
tively lowered glucagon-induced hyperglycemia [67]. While
the exact binding domain of the glucagon receptor antago-
nists within the receptor has not yet been identified, this

study suggests that there may be direct competition between
these molecules for the ligand-binding pocket.

A complementary approach to determining the potential
efficacy of reducing glucagon action for the treatment of
type 2 diabetes involves the use of anti-sense oligonucleo-
tides (ASO) to reduce glucagon receptor expression in the
liver of diabetic mice. Db/db mice treated with glucagon
receptor ASO exhibited lowered blood glucose, triglyceride,
and free fatty acid levels and improved glucose tolerance
with no apparent hypoglycemia or changes in pancreatic islet
architecture [68]. In a similar study, glucagon receptor ASO
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decreased cAMP-dependent gene transcription in the liver
and not only preserved insulin secretion, but increased serum
levels of both insulin and GLP-1 [69]. ASO treatment re-
sulted in significant a-cell hypertrophy and/or hyperplasia
[69] and increased levels of glucagon; however, the hyper-
glucagonemia appeared to be reversible. The data obtained
with glucagon receptor ASO treatment is consistent with the
phenotype observed in GCGR™ mice, providing further evi-
dence that this treatment specifically targets glucagon re-
ceptor expression.

There is strong evidence suggesting that hypergluca-
gonemia plays a major role in the hyperglycemia associated
with both type 1 and type 2 diabetes. The growing amount of
data demonstrating improved glucose tolerance and de-
creased glycemia following administration of agents that
block glucagon receptor action accentuates the importance of
glucagon for the control of glucose homeostasis. Both GLP-
1 and amylin exert potent inhibitory effects on glucagon se-
cretion in human subjects, even in patients with type 1 dia-
betes [70, 71], hence GLP-1R agonists or amylin analogues
may exert glucose-lowering effects in diabetic subjects in
part via reduction of glucagon action. The discovery of
molecules that permit safe and effective lowering of gluca-
gon receptor signaling may prove therapeutically useful for
the treatment of diabetes in human subjects.

Glucagon can be further processed in the liver by an en-
dopeptidase to a truncated form consisting of only the C-
terminal 11 amino acids [72]. Glucagon(19-29), or miniglu-
cagon, inhibited glucagon-induced increases in intracellular
calcium and was a powerful inhibitor of insulin release in
cultured pancreatic b-cells [73] (Fig. 3). Interestingly,
miniglucagon had no effect on glucagon-induced cAMP ac-
cumulation in this model. While the effects of miniglucagon
on calcium signaling in heart [74-76] and liver [77] cells
have been investigated, little data is available on the poten-
tial use of miniglucagon as an antagonist of glucagon action
in rodent models of diabetes. Nevertheless, miniglucagon
blocks the insulinotropic effect of co-administered glucagon
and the administration of antisera directed against miniglu-
cagon enhanced glucose-stimulated insulin release from the
rat pancreas [78, 79]. Hence modulating miniglucagon action
may also be theoretically useful for enhancing b- cell func-
tion in the setting of type 2 diabetes.

THE GLUCAGON-LIKE PEPTIDES

While glucagon secretion from islet a- cells is stimulated
by hypoglycemia and suppressed following food intake, the
two glucagon-like peptides, GLP-1 and GLP-2, are released
from intestinal enteroendocrine L-cells following nutrient
ingestion [3, 80, 81], primarily by meals rich in carbohy-
drates and lipids [82-85]. Secretion of these intestinal
PGDPs is regulated by glucose-dependent insulinotropic
polypeptide [86], somatostatin [87], gastrin-releasing peptide
[88], and neural stimuli [89], in a species-specific manner
[90]. For a more detailed review on the regulation of gluca-
gon-like peptide secretion, see [90-92]. Although the bio-
logically active forms of GLP-1 and GLP-2 share almost
40% amino acid identity, they possess very distinct and sepa-
rate biological actions due to their high specificity of binding
to their respective receptors. While both peptides regulate
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energy homeostasis, GLP-2 acts mainly in the gastrointesti-
nal tract to promote nutrient absorption and maintain bowel
integrity, while GLP-1 inhibits gastric emptying and gluca-
gon secretion and stimulates insulin synthesis and release in
a glucose-dependent manner.

Glucagon-Like Peptide-1 (GLP-1)

GLP-1 exists as two equipotent bioactive molecular
forms, GLP-1 (7-37) and GLP-1 (7-36)amide (Fig. 3). GLP-1
secretion facilitates lowering of blood glucose and improved
glucose tolerance by increasing the insulin:glucagon ratio.
GLP-1 also inhibits post-prandial gastrointestinal motility
and secretion, and suppresses food intake via the central
nervous system (CNS). For a more detailed account of the
biological actions of GLP-1, refer to [92-94]. More recently,
considerable experimental evidence indicates that activation
of GLP-1R signaling can also protect b-cells from pro-
grammed cell death (apoptosis) and stimulate b- cell prolif-
eration in cultured rodent and human islets and in rodent
models of diabetes [95-99].

GLP-1 binds to the b-cell GLP-1 receptor (GLP-1R)
with high affinity and specificity. The GLP-1R is also found
in the lung, stomach, intestine, kidney, heart, and the central
and peripheral nervous systems [100-102]. Whether the
GLP-1 receptor is also expressed in adipose tissue [103,
104], muscle [105, 106], liver [107, 108], and pancreatic a-
cells [109, 110] in all mammals remains unclear. The exis-
tence of GLP-1-activated signaling pathways in these tissues
has stimulated interest in the search for a second GLP-1R
receptor.

The GLP-1R is coupled to multiple downstream signal-
ing pathways. Activation of the GLP-1R in transfected cells
and cultured islets leads to increases in intracellular cCAMP,
and the activation of PKA, cAMP/guanine-nucleotide ex-
change factor (Epac), and PI-3K [111, 112]. GLP-1R sig-
naling inhibits ATP-sensitive and voltage-dependent K*
channels [113], thus reducing cell depolarization, and in-
creasing cytosolic calcium [114], resulting in the stimulation
of cellular exocytosis machinery [115]. GLP-1R activation
stimulates insulin release and induces glucose competence in
cultured islet cells, up-regulates insulin gene expression, and
enhances insulin biosynthesis. GLP-1Rs are also widely dis-
tributed in multiple regions of the brain where receptor acti-
vation stimulates expression of c-fos [116, 117], in associa-
tion with inhibition of food intake and regulation of hypo-
thalamic-pituitary function. The cytoprotective actions of
GLP-1 are largely mediated through cAMP/PKA-dependent
activation of CREB and PI-3K-dependent activation of
Akt/PKB [96, 99, 118, 119]. GLP-1R signaling leads to de-
creased cleavage of pro-apoptotic molecules, including
caspase-3 and poly-ADP-ribose polymerase (PARP), and
increased expression of cytoprotective molecules such as
Bcl-2, Bel-xL, and the inhibitor of apoptosis protein-2 (IAP-
2) (For review, see [120]). Mice with a targeted deletion of
the GLP-1R exhibit mild fasting hyperglycemia and glucose
intolerance in association with decreased circulating insulin
levels following glucose challenge [121], but are otherwise
viable and healthy. Furthermore, consistent with a role for
endogenous GLP-1R signaling in the control of b-cell mass,
GLP-1R" mice exhibit reduced numbers of large islets [122]
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Fig. (3). The amino acid structure of the human proglucagon-derived peptides and their degradation products. Glicentin, oxynto-
modulin, glucagon, and miniglucagon are all derived by differential cleavage of the N-terminal domain of proglucagon, and thus share high
sequence identity. However, only glucagon has been shown to have high affinity and potency at the glucagon receptor. Miniglucagon may
act as a glucagon receptor antagonist in vivo. Ubiquitously expressed DPP-1V rapidly cleaves off the two N-terminal amino acids from both
GLP-1 and GLP-2, yielding the biologically inactive GLP-1 (9-37/9-36°™%) and GLP-2 (3-33). These byproducts may serve as functional
receptor antagonists in vivo. Substitution of a glycine residue for the alanine at position two renders [Gly2]GLP-2 (1-33) insensitive to DPP-

1V cleavage and dramatically increases its biological half-life.

and enhanced b- cell apoptosis following administration of
streptozotocin [96].

Therapeutic Potential of GLP-1
Treatment of Diabetes Mellitus

Activation of GLP-1 receptor signaling in the pancreas
leads to increased production and secretion of insulin in re-
sponse to hyperglycemia, with concurrent protection of b-
cell mass, improving glucose tolerance and maintaining islet
integrity. GLP-1R signaling also improves the glucose-
sensing ability of the b-cell [123], possibly through up-
regulation of glucose transporter and glucokinase expression
[124]. All of these biological actions, but specifically its
ability to potently stimulate glucose-dependent insulin re-
lease makes GLP-1-based therapies an attractive approach
for the treatment of type 2 diabetes.

Patients with type 2 diabetes exhibit elevated levels of
fasting blood glucose, insulin resistance, reduced glucose-
stimulated insulin release, and progressive b-cell failure.
Administration of native GLP-1 or GLP-1R agonists has
consistently improved glucose tolerance and glycemic con-
trol in studies of human subjects with type 2 diabetes (For

review, see [125, 126]). Although the GLP-1 secretory re-
sponse in patients with type 2 diabetes may be diminished
compared to healthy human subjects [127], low-dose infu-
sion of GLP-1 significantly increases insulin secretion and
improves b- cell responsiveness to glucose [123]. Type 2
diabetics treated continuously for six weeks with a subcuta-
neous infusion of GLP-1 exhibited enhanced insulin secre-
tion, reduced fasting and post-prandial blood glucose, im-
proved insulin sensitivity and decreased levels of hemoglo-
bin A1, (HbA 1) [128]. Administration of GLP-1 to patients
with type 2 diabetes has shown promising results even fol-
lowing the failure of other insulinotropic agents to lower
glucose [129]. Moreover, GLP-1 has also been shown to
increase the effectiveness of commonly used diabetes medi-
cations from various drug families, including metformin
[130], pioglitazone [131], and glibenclamide [132], when
administered concurrently. As the effects of GLP-1 on
insulin secretion and biosynthesis are glucose-dependent,
there is far less likelihood of developing hypoglycemia in
response to GLP-1 administration relative to the mechanism
of action of other insulinotropic drugs [133].

While the principal effect of GLP-1 administration is the
improvement of blood glucose in diabetic subjects, pro-
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longed treatment with GLP-1R agonists may also have addi-
tional benefits in diabetic individuals. Moreover, there is
tremendous interest in determining whether long-term acti-
vation of GLP-1R signaling in human subjects will inhibit
b- cell apoptosis and stimulate b- cell proliferation thereby
preventing the progressive deterioration in b- cell function
that is frequently associated with the natural history of type 2
diabetes.

The majority of interest in the therapeutic potential of
GLP-1 is focused on type 2 diabetes; however, there is some
interest in GLP-1 action in the setting of type 1 diabetes.
Although GLP-1 failed to augment insulin-mediated hepatic
glucose uptake [134], infusion of native GLP-1, or the GLP-
1R agonist exendin-4 (see GLP-1R agonists), normalized
postprandial glucose excursions and improved glycemic
control in patients with type 1 diabetes [135, 136]. Normali-
zation of blood glucose in subjects with type 1 diabetes was
most likely achieved through reduction of the rate of gastric
emptying and inhibition of glucagon secretion. Given the
cytoprotective and proliferative capabilities of GLP-1 dem-
onstrated in pre-clinical studies, there is considerable interest
in the potential use of GLP-1 to stimulate b-cell proliferation
and/or neogenesis in patients with type 1 diabetes. Further-
more, the recent demonstration that islet neogenesis may be
achieved using a combination of peptides such as GLP-1 and
gastrin, suggests new lines of future experimentation for the
treatment of type 1 diabetes.

GLP-1, Food Intake and the Control of Body Weight

Activation of the GLP-1R signaling axis in the central
nervous system regulates feeding behavior. GLP-1, admin-
istered via intracerebroventricular (ICV) injection inhibits
food intake in rodents [137, 138] and may induce a condi-
tioned taste aversion and an aversive stress response [139,
140]. GLP-1, and long-acting GLP-1R peptide agonists cross
the blood-brain barrier [141, 142], hence hormone signals
released from the gastrointestinal tract following a meal may
communicate with CNS centers regulating subsequent feed-
ing activity. Furthermore, administration of much larger
GLP-1R agonists (Albugon) that do not readily cross the
blood brain barrier results in reduced food intake and activa-
tion of c-fos expression in the murine CNS following intrap-
eritoneal administration [143]. In human studies, type 2 dia-
betics receiving GLP-1 therapy exhibited reduced food in-
take and subsequent weight loss [128, 144]. Hence GLP-1R
agonists have the ability to decrease body weight in diabetic
patients following chronic administration in vivo.

To address the effectiveness of GLP-1 in the setting of
obesity, GLP-1 was administrated to normal and obese hu-
man subjects in short-term infusion studies where it en-
hanced satiety and decreased energy intake [145, 146]. Al-
though it is possible that the anorectic actions of GLP-1 are
mediated via GLP-1R receptor activation in the central nerv-
ous system, the effects of GLP-1 on satiety and decreased
appetite may be due to in part to its ability to decrease gastric
motility [147]. Whether chronic GLP-1R agonist admini-
stration will promote weight loss in non-diabetic obese hu-
man subjects in the absence of type 2 diabetes merits further
investigation.
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GLP-1 and the Treatment of Central Nervous System Dis-
orders

Due to the anti-apoptotic and proliferative actions of
GLP-1R signaling and the diverse expression of the GLP-1R
throughout the brain, GLP-1 may also play a role in neuro-
protection and neuronal regeneration in the central nervous
system. Consistent with this hypothesis, GLP-1 treatment of
PC12 cells, a commonly used model of neuronal cell differ-
entiation, promoted neurite outgrowth and nerve growth
factor (NGF)-induced differentiation [148]. Furthermore,
GLP-1 prevented apoptosis in PC12 cells and cultured rat
hippocampal neurons after NGF withdrawal or glutamate
treatment, respectively [148, 149]. GLP-1 reduced the levels
of amyloid beta-peptide in the brain, and reduced the levels
of amyloid precursor protein (APP) and inhibited amyloid
beta-peptide and iron-induced cell death in cultured hippo-
campal neurons [149]. These studies have generated interest
in the potential of GLP-1-based therapies for the treatment of
neurodegenerative diseases, such as Alzheimer’s disease, or
diabetic peripheral neuropathy (for review, see [150]).

GLP-1 may also play a role in the regulation of cognitive
function. Activation of GLP-1R signaling in the CNS en-
hanced associative and spatial learning in mice whereas
GLP-1R knockout mice exhibit learning deficits that are re-
versed upon recovery of GLP-1R expression using gene
therapy [151]. Moreover, over-expression of GLP-1R in the
hippocampus enhances learning and memory in rats and
GLP-1R agonist administration reduced kainite-induced neu-
ronal apoptosis and seizure activity in normal mice and in
GLP-1R knockout mice after GLP-1R gene transfer in hip-
pocampal cells [151]. Hence GLP-1 may facilitate protection
and modeling of areas of the central nervous system respon-
sible for learning and memory.

GLP-1 and the Cardiovascular System

GLP-1 has acute effects on the cardiovascular system
that appear different in rodents vs. human subjects. Treat-
ment of rats with GLP-1 produced rapid significant dose-
dependent increases in both diastolic and systolic blood pres-
sure and heart rate that could be blocked by a specific GLP-
1R antagonist [152-154]. Conversely, GLP-1R knockout
mice exhibit reduced resting heart rate, elevated left ven-
tricular (LV) end diastolic pressure, and increased LV thick-
ness at two months of age. Although basal cardiac function
appeared similar to wild-type mice, 5-month old GLP-1R”
mice exhibited impaired LV contractility and diastolic func-
tion following insulin-induced hypoglycemia [155]. Al-
though GLP-1R activation in rat cardiomyocytes stimulated
accumulation of intracellular cAMP, increased GLP-1 re-
ceptor signaling paradoxically decreased contraction ampli-
tude and did not affect cellular calcium levels [156]. There-
fore the contractile and chronotropic effects of systemic
GLP-1 infusion may be indirectly mediated through activa-
tion of neural or hormonal mechanisms. GLP-1 or exendin-4
can also activate central sympathetic neurons and adrenal
medullary chromaffin cells that produce catecholamines,
suggesting that GLP-1R signaling networks may modulate
cardiovascular function via central nervous system-
dependent pathways [157].
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Further evidence for multiple signal transduction path-
ways regulating central GLP-1R-dependent cardiovascular
events derives from studies in rats demonstrating a role for
nicotinic, muscarinic, and vasopressin receptor signaling in
GLP-1R-dependent regulation of blood pressure [158]. More
recently, the therapeutic potential of GLP-1 administration
has been examined in specific models of cardiovascular dys-
function. GLP-1 was administered to dogs with heart failure
induced following 28 days of rapid electrical pacing. GLP-1
increased ventricular contractility, stroke volume and cardiac
output, and decreased left ventricular end-diastolic pressure,
heart rate, and systemic vascular resistance. GLP-1 also in-
creased myocardial insulin sensitivity and myocardial glu-
cose uptake [159].

Paradoxically, despite the acute inotropic effects of GLP-
1 on cardiovascular function, a two week GLP-1 infusion in
salt-sensitive rats attenuated hypertension, reduced proteinu-
ria and albuminuria, improved endothelial function, and de-
creased cardiac and renal damage [160, 161]. It was hy-
pothesized that these effects were due mainly to the diuretic
and natriuretic properties of GLP-1R signaling in the kidney.
Similarly, a 3-hour infusion of GLP-1 in healthy human
subjects and insulin-resistant obese men enhanced sodium
excretion, reduced H™ secretion, and reduced glomerular
hyperfiltration [162].

Complementary studies examined the effects of GLP-1
administration in patients with acute myocardial infarction
(AMI) and severe systolic dysfunction after successful an-
gioplasty. GLP-1-treated patients had significantly improved
LV function, reduced levels of plasma glucose and free fatty
acids and improved global wall motion score indexes and
regional wall motion score indexes [163]. This data suggests
that GLP-1 therapy merits further investigation in the treat-
ment of specific cardiovascular diseases, and additional
studies are needed to determine the precise mechanisms for
the beneficial aspects of GLP-1 action in these patients.

The Biological Half-Life of the Glucagon-Like Peptides -
Role of DPP-1V

One of the major drawbacks of using native GLP-1, or
GLP-2, as a therapeutic agent for the treatment of human
disease is their rapid enzymatic degradation and clearance,
leading to extremely short biological half lives in vivo. The
alanine residue in position two makes both glucagon-like
peptides targets for cleavage by a ubiquitously expressed
protease, dipeptidyl peptidase-1V (DPP-I1V) (Fig. 3). Native
GLP-1 has a half-life (t;,) of 1 — 2 minutes in human sub-
jects, due mainly to enzymatic degradation and extensive
renal clearance, while GLP-2 has a slightly longer half-life
of 7 minutes. Once cleaved, the biologically inactive forms
of GLP-1 (9-37/36amide) and GLP-2 (3-33) are also rapidly
excreted via the kidney. These peptide metabolites may serve
as receptor antagonists, thus decreasing the activity of ago-
nists [164], or may also have additional biological functions.
It has recently been demonstrated that GLP-1 (9-36amide)
reduces blood glucose in pigs [165], however this metabolite
has been shown to have no effect on control of blood glucose
in humans [166]. Thus, research is primarily focused on the
biological and physiological actions of the intact peptides
and their potential usefulness as therapeutic agents.
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Although both native GLP-1 and GLP-2 have been
shown to be effective following chronic administration to
patients with diabetes and short bowel syndrome, respec-
tively [128, 167], continuous infusion or multiple injections
of the native peptide were needed to achieve sufficient levels
of bioactive peptide throughout the treatment period. There-
fore, intense efforts have been made to prolong drug action
through the development of long-acting GLP-1 and GLP-2
analogues with improved pharmacokinetic profiles that are
resistant to DPP-1V cleavage or through drugs that target and
inhibit the DPP-IV enzyme directly.

GLP-1R Agonists

In 1993, a naturally occurring peptide isolated from the
venom of the Heloderma suspectum lizard was characterized
as a specific GLP-1R agonist with enhanced biological ac-
tivity compared to native GLP-1 [168-171]. Exendin-4 ex-
hibits approximately 53% amino acid identity relative to
native GLP-1 (Fig. 4); a glycine residue in position two ren-
ders the peptide resistant to DPP-1V cleavage, and thus con-
fers a significantly longer half-life of ~ 26 minutes in hu-
mans following IV exendin-4 administration [172]. Exendin-
4 shares a similar structure to GLP-1 and it has been shown
that the additional 9 amino acids at the C-terminus increase
the affinity of the GLP-1R for exendin-4 [173]. While multi-
ple GLP-1R extracellular domains are required for binding
of native GLP-1, exendin-4 binding appears to primarily
involve only the N-terminus [174]. Thus, the enhanced ac-
tions of exendin-4 are mostly likely the combined result of
reduced DPP-1V cleavage and enhanced binding to the GLP-
1R. The requirement of the N-terminus of native GLP-1 for
specific binding to the GLP-1R may explain why modifica-
tions made to the native GLP-1 amino acid sequence to ren-
der them insensitive to DPP-1V significantly decrease the
receptor affinity for the new ligand. It is interesting to note
that although many of these DPP-1V resistant GLP-1 ana-
logues exhibit decreased binding and cAMP accumulation,
they appear to have similar or enhanced insulinotropic and
glucose-lowering effects, in vitro and in vivo, compared to
native GLP-1 [175-177].

A synthetic version of exendin-4, Exenatide (AC2993),
has been studied in human patients with Type 2 diabetes.
Exenatide administered subcutaneously for 5 days reduced
fasting and post-prandial blood glucose levels, in association
with increased levels of plasma insulin, decreased circulating
glucagon, and reduced gastric emptying in patients with type
2 diabetes [178] (For review, see [171]). The main adverse
events included transient headache, nausea, and vomiting.
Exenatide has also been shown to be efficacious when used
in conjunction with other diabetes therapies, leading to low-
ering of HbA;. levels in diabetic patients not currently
achieving optimal glycemic control with diet and/or oral
anti-diabetic medications [133]. Exenatide has completed
Phase 3 clinical testing and long acting release formulations
of Exenatide (Exenatide LAR), which may allow once a
week dosing, are under clinical development.

Exenatide was approved for the treatment of type 2 dia-
betes in the United States in April 2005 on the basis of 3
separate Phase 3 clinical trials.>* Patients with diabetes not
optimally controlled on either metformin, sulphonylurea
therapy, or a combination of metformin and sulphonylurea
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received twice daily injections of Exenatide, 5 or 10 ug twice
daily. The therapy was generally well tolerated, although
nausea was the principal adverse event reported in about
40% of the Exenatide-treated subjects. Exenatide reduced
levels of HbAlc ~ 0.9-1% over 30 weeks, in association with
modest weight loss (1-2 kg). The incidence of mild to mod-
erate hypoglycemia was increased in patients receiving Ex-
enatide plus a sulphonylurea agent but not in subjects treated
with Exenatide plus metformin. Although anti-Exenatide
antibodies were detected in up to 40% of patients following
initiation of Exenatide therapy, there was no correlation be-
tween the presence or absence of antibodies and the thera-
peutic response to Exenatide.**

Addition of amino acid side-chains on the GLP-1 peptide
also decreases the extent of DPP-IV cleavage [179]. Similar
to data represented for other GLP-1 analogs resistant to en-
zymatic cleavage, these GLP-1R agonists have reduced af-
finities for the receptor and a corresponding diminished
CAMP response. However, these DPP-1V resistant analogs
produced potent insulinotropic effects in vitro and when
modified at the N-terminus, these agonists significantly im-
proved glucose tolerance and insulin secretion in diabetic
mice [177, 180].

Liraglutide (NN2211) is a human GLP-1 analogue that
possesses a fatty-acyl moiety on the GLP-1 peptide back-
bone (Fig. 4), increasing the half-life in humans to approxi-
mately 12 hours by conferring DPP-IV resistance and pro-
moting non-covalent binding to serum albumin, thus pro-
tecting the peptide from degradation and reducing renal
clearance. Liraglutide was well tolerated when administered
to humans in short-term studies, and a one week treatment
course in diabetic patients improved b-cell function and
decreased blood glucose and levels of plasma glucagon [181-
183]. Liraglutide administered once daily for 8 weeks to
obese diabetic patients resulted in improved glycemic con-
trol with no changes in overall body weight or energy ex-
penditure, although a trend toward reduction of fat mass was
noted [184]. Administration of Liraglutide for 12 weeks re-
duced HbA. and the ratio of proinsulin:insulin, improved
glycemic control, and reduced body weight in diabetic pa-
tients [185]. Adverse events following Liraglutide treatment
were reported to be mild and transient.

The theoretical attractiveness of prolonging the circulat-
ing ty, of GLP-1 has stimulated the development of ana-
logues that utilize binding to albumin, which has a biological
half-life of 11-14 days in human subjects, for prolonging the
duration of action of GLP-1. Prototype drugs that utilize al-
bumin technology include CJC-1131 (Conjuchem) and Al-
bugon (Human Genome Sciences). To create CJC-1131, a
maleimidoproprionic acid (MPA) group was attached to the
carboxy terminus of a degradation-resistant GLP-1 analogue

’DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of ex-
enatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-
treated patients with type 2 eiabetes. Diabetes Care 2005; 28(5): 1092-100.

Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al.
Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with
type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005; 28(5):
1083-91.

“Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide
(exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with
type 2 diabetes. Diabetes Care 2004; 27(11): 2628-35.
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(Fig. 4) [186]. This modification increased the circulating
half-life to 10 — 12 days in humans. CJC-1131 binds to the
human GLP-1 receptor and significantly reduced levels of
blood glucose, increased insulin transcripts, and increased
islet size when administered for 4 weeks to db/db mice
[187]. Albugon is a recombinant protein encoding GLP-1
fused in the same open reading frame as human serum albu-
min. This GLP-1-aloumin fusion protein improved glucose
tolerance, reduced food intake, inhibited gastric emptying,
and activated c-fos expression in the murine central nervous
system [143]. Although albumin-based drugs show efficacy
in animal models, there is limited information about their
effectiveness in human clinical studies.

Glucagon-Like Peptide-2 (GLP-2)

GLP-2 is co-secreted together with GLP-1 from intestinal
L-cells in a 1:1 ratio. While GLP-1 elicits its main effects on
the endocrine pancreas, the majority of GLP-2 action is ob-
served directly in the gastrointestinal mucosa. Bioactive
GLP-2 (1-33) inhibits gastric emptying and gastric acid se-
cretion [188-190], while enhancing nutrient absorption and
epithelial barrier function [191-193]. A role for GLP-2 in the
regulation of intestinal mucosal growth was discovered fol-
lowing studies in rodents. Exogenously administered native
GLP-2 stimulated significant small bowel growth in mice,
which was largely due to lengthening of the intestinal villi
[194]. The growth-promoting effects of GLP-2 on the bowel
were due in part to increased crypt cell proliferation and in-
hibition of enterocyte apoptosis (For review, see [195, 196]).
GLP-2 is also produced in the brainstem and transported to
different regions of the central nervous system. Although the
precise actions of GLP-2 in the central nervous system re-
main unclear, there is some evidence that pharmacological
amounts of GLP-2 can inhibit food intake in rodents fol-
lowing intracerebroventricular administration [197, 198], but
peripheral infusion or intermittent injection of GLP-2 in hu-
mans has not been associated with a reduction in food intake
[167, 199, 200].

The GLP-2 receptor (GLP-2R) was cloned from rat and
human hypothalamic and intestinal cDNA libraries [201]. In
contrast to the widespread tissue distribution of the GLP-1R,
GLP-2R expression is highly restricted, predominantly to the
gastrointestinal tract. GLP-2 receptor transcripts have been
detected in the stomach, small and large bowel, the brain,
and the lung [197, 202, 203]. Immunocytochemistry has lo-
calized the GLP-2R to human enteroendocrine cells [202],
myofibroblasts® and specific regions of the murine central
nervous system [198], while in situ hybridization has local-
ized the receptor in the CNS [203] and murine enteric neu-
rons [204]. The GLP-2R recognizes GLP-2, but not related
members of the glucagon peptide superfamily, in a highly
specific manner [201, 205]. Agonist binding results in dose-
dependent activation of adenylyl cyclase, increases in intra-
cellular cAMP, and activation of PKA in cells expressing a
heterologous rat or human GLP-2R, as well as in primary
cell cultures from the CNS and the intestinal mucosa [201,
203, 206, 207]. Furthermore, GLP-2 has been shown to

50rskov C, Hartmann B, Poulsen SS, Thulesen J, Hare KJ, Holst JJ. GLP-2 stimulates
colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 recep-
tors. Regul Pept 2005; 124(1-3): 105-12.
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Fig. (4). Long-acting, degradation-resistant GLP-1R agonists. A synthetic version of the lizard derived peptide exendin-4 (exenatide) is a
highly potent GLP-1R agonist which is highly homologous to GLP-1, but resistant to DPP-1V cleavage due to the glycine residue in position
two. Identical (letters) and similar (+) amino acids are shown to illustrate homologous regions. N-terminally truncated Exendin (9-39) is a
potent GLP-1R antagonist in vitro and in vivo. The biological half-life of GLP-1 is significantly extended by the addition of a fatty-acyl motif
(liraglutide) [256] or maleimidoproprionic acid (MPA) [186, 187] which promote binding of the peptide to serum albumin. Chemical struc-
tures have been adapted and reproduced with permission from the publishers.

activate c-fos in cells transfected with the GLP-2R [206] and
in the murine intestinal mucosa [204]. GLP-2R signaling has
also been shown to activate intestinal constitutive nitric ox-
ide synthase (NOS) activity and endothelial NOS protein
abundance that appears to play a role in GLP-2-induced in-
testinal blood flow and glucose uptake [208].

The direct cytoprotective effects of GLP-2R signaling are
mediated via a number of signaling mechanisms depending
on the specific apoptotic stimulus and experimental model.

GLP-2R activation inhibits cycloheximide—induced apopto-
sis in a PKA-independent manner [209], while PKA appears
to regulate the anti-apoptotic properties of GLP-2R signaling
when apoptosis is induced by either inhibition of PI-3K
[210] in transfected fibroblasts or glutamate in hippocampal
neurons [203]. There is conflicting evidence on whether
GLP-2R activation can directly stimulate cellular prolifera-
tion. Treatment of cultured colonic intestinal cells or astro-
cytes with GLP-2 results in increased cell proliferation [211-
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213], whereas cells transfected with the GLP-2 receptor fail
to exhibit a significant mitogenic effect after treatment with
moderate concentrations of GLP-2 [206]. This suggests that
GLP-2R signaling may regulate cell proliferation indirectly,
possibly via release of as yet unidentified growth factors.
Furthermore, GLP-2 treatment may inhibit proliferation in
cultured epithelial cells from the small intestine yet high
concentrations of GLP-2 stimulate cell proliferation in cell
lines derived from the large bowel [214], suggesting that
GLP-2R activation of downstream mitogenic effectors may
be cell type- or tissue-specific. Importantly, the effects of
GLP-2 in different cell types are often observed in the ab-
sence of documented expression of the known GLP-2R,
leaving open the possibility that GLP-2 may exert some of
these effects through as yet undefined receptors and signal-
ing pathways.

Therapeutic Potential of GLP-2
Intestinal Disease and Injury

Following the identification of GLP-2 as the PGDP most
likely responsible for the marked small bowel hyperplasia
observed in humans or rodents with proglucagon-producing
tumours [194, 215], interest has focused on the potential use
of GLP-2 as a therapeutic agent to stimulate bowel growth
and/or repair mucosal damage in the setting of gastrointesti-
nal injury. In addition to proliferative and cytoprotective
actions, GLP-2 also enhances nutrient absorption, and inhib-
its gastric acid secretion and emptying, further extending the
potential benefits of using this peptide hormone to treat hu-
man patients with compromised gastrointestinal function.

GLP-2 (1-33) is rapidly inactivated by DPP-IV cleavage
and GLP-2 (3-33) has recently been shown to act as a weak
agonist and a competitive antagonist at the GLP-2R in vitro
and in vivo [216]. In an effort to extend the circulating half-
life of GLP-2 in vivo, a peptide analogue was developed with
a glycine residue substituted for the alanine in position two,
thus preventing DPP-1VV-mediated cleavage. This analogue,
designated ALX-0600, or Teduglutide specifically activates
the GLP-2R in vitro [206] and is more potent relative to na-
tive GLP-2 in vivo [217].

h[Gly2]GLP-2 and native GLP-2 have been used to ex-
amine the therapeutic benefit of enhanced GLP-2 action in
diverse models of intestinal injury. Infusion of GLP-2 in pigs
or rats prevented the mucosal atrophy associated with total
parental nutrition (TPN) [218-221] and h[Gly2]GLP-2 ad-
ministration significantly decreased intestinal permeability in
a rodent model of acute necrotizing pancreatitis [222]. Fur-
thermore GLP-2 stimulated mucosal growth and reduced
immunosuppression following acute burn injury in rats
[223]; enhanced gastrointestinal absorptive function and in-
duced mucosal hyperplasia in rat models of ischemia-
reperfusion and following massive intestinal resection [224,
225]; and decreased the severity of bowel injury in the set-
ting of experimental enteritis or colitis in mice [226-230].
GLP-2 also acutely reduced mucosal permeability and di-
minished both immediate and late-phase hypersensitivity
reactions by enhancing barrier function in mice [193, 231].
Although there is limited experience with GLP-2 admini-
stration in humans, twice daily injections of GLP-2 in pa-
tients with short bowel disease resulted in increased nutrient
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absorption, increased body weight, and delayed gastric
emptying [167]. Due to its significant protective and regen-
erative properties in the bowel, NPS Pharmaceuticals Inc. is
currently investigating the efficacy of h[Gly2]GLP-2, cur-
rently named Teduglutide, in humans with intestinal diseases
characterized by insufficient repair of the intestinal mucosa
and/or compromised nutrient absorption.

Chemotherapy and Cancer

Significant bowel injury is often associated with inten-
sive chemotherapy for the treatment of cancer. Due to its
cytoprotective properties, GLP-2 administration to patients
undergoing chemotherapy may lessen the damaging effects
of chemotherapy on the intestinal epithelium. In support of
this hypothesis, administration of GLP-2 prior to treatment
of mice with either irinotecan hydrochloride or 5-fluorouracil
reduced mortality, decreased bacteremia, and enhanced in-
testinal crypt cell survival [232]. Similarly, a DPP-IV in-
hibitor was recently shown, in combination with metformin,
to reduce 5-fluorouracil-induced intestinal atrophy, poten-
tially through its effect on increasing the levels of GLP-2 in
vivo [233].

As GLP-2 is a potent growth factor for the bowel mu-
cosa, sustained GLP-2 administration may exhibit potential
for promotion of intestinal tumor growth. In studies with
tumor-bearing rats, GLP-2 administration did not promote
existing tumor growth [219]. Similarly, administration of
h[Gly2]-GLP-2 to tumor-bearing mice did not effect tumor
growth or the effect of chemotherapy on reduction of tumor
size [232]. In contrast, administration of GLP-2 increased the
number of small intestinal polyps in mice pre-injected with
the carcinogen 1, 2-dimethylhydrazine (DMH), suggesting
that GLP-2, in the setting of co-administered carcinogens
may promote the growth of chemically-induced murine tu-
mors [234].

GLP-2 and Bone

A significant increase in bone density was observed in
human patients with short-bowel syndrome following short-
term administration of GLP-2 [235], suggesting that GLP-2
may also regulate bone growth and/or remodeling. Although
the precise localization of GLP-2 receptor expression in iso-
lated bone tissue or in bone-derived cell populations remains
unclear, GLP-2 caused a dose-dependent decrease in bone-
resorption and stimulated bone formation when administered
to postmenopausal women [236, 237]. These findings sug-
gest that GLP-2 may also be effective, either directly or indi-
rectly, in the prevention and treatment of osteoporosis.

GLP-2 Signaling in the Central Nervous System and
Regulation of Feeding

ICV administration of GLP-2 in rats inhibited food intake
[197]; however, a subsequent study showed only a modest
yet significant inhibition of short-term food intake following
intracerebroventricular administration of pharmacological
amounts of GLP-2 in mice [198]. Intriguingly, whereas the
actions of GLP-2 on food intake in rats were blocked by the
GLP-1R antagonist exendin(9-39), similar experiments using
exendin(9-39) in mice resulted in augmentation of the an-
orectic actions of GLP-2 [198]. These discrepancies may
potentially be explained by species-specific differences in
GLP-2 action in the brain. Furthermore, studies in humans
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have not demonstrated a reduction in food intake following
peripheral GLP-2 administration [167, 199, 200]. These data
suggest that GLP-1R and GLP-2R signaling may impinge
upon common downstream targets in the CNS in a species-
specific manner.

Consistent with the anti-apoptotic properties of GLP-1 in
the CNS, GLP-2 also inhibits apoptosis in cultured hippo-
campal neurons [203]. As GLP-2 receptor expression has
been localized to multiple regions of the central nervous
system involved in learning and memory and in enteric neu-
rons, GLP-2R signaling may play a role in neuronal function
and/or survival.

DPP-1V Inhibitors

Native GLP-1 and GLP-2 are both inactivated by enzy-
matic cleavage, hence inhibition of the activity of DPP-1V
would be predicted to increase the circulating level of both
peptides in vivo. DPP-1V (CD26) was originally identified as
a glycoprotein found on the surface of lymphocytes, and has
been shown to regulate cytokine production and T cell pro-
liferation (For review, see [238]). Although DPP-IV appears
to play an important role in multiple aspects of immune
function, DPP-1V knockout mice are viable and show no
overt immunological phenotype in the basal state [239].
However, CD26™ mice exhibit alterations in the proportion
of T cell subsets, and reduced immunoglobulin and cytokine
responses following immunization with pokeweed mitogen
[240]. Consistent with an essential role for CD26/DPP-IV in
the control of GLP-1 degradation, CD26”" mice exhibit in-
creased levels of intact GLP-1, circulating insulin, and en-
hanced glucose tolerance in response to an oral glucose
challenge state [239].

A number of DPP-1V inhibitors have been developed that
mimic the glycemic phenotype produced in the knockout
mouse, and may have therapeutic potential for the treatment
of human disease. DPP-1V inhibitors have been shown to
enhance post-prandial insulin secretion, increase pancreatic
insulin content, maintain islet integrity, and improve periph-
eral insulin sensitivity in animal models of diabetes [241-
244]. Clinical data with DPP-1V inhibitors in human subjects
with type 2 diabetes, although limited, suggest that DPP-1V
inhibitors improve glycemic control, inhibit glucagon secre-
tion, and decrease HbA /. levels in 4-12 week studies. For a
more extensive overview of current data involving the use of
DPP-1V inhibitors to treat diabetes, see [126, 238, 245-247].
DPP-1V inhibition also prevents the degradation of GLP-2 in
vivo and enhances the intestinotrophic effect of exogenously
administered GLP-2 in rodents. Although the use of DPP-IV
inhibitors for the treatment of diabetes seems promising,
inhibition of DPP-IV may have potential unwanted side ef-
fects on immunological function. Highly specific DPP-1VV
inhibitors that target the catalytic site of the enzyme without
abrogating CD26 signaling in lymphocytes have been devel-
oped; whether they will prove safe in long-term human
studies merits careful ongoing assessment.

DESENSITIZATION OF THE
RECEPTOR FAMILY

Following identification of the GPCR superfamily of
receptors, extensive research has been conducted to identify
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native ligands and elucidate the biological functions associ-
ated with receptor activation. Since GPCRs serve as recep-
tors for a multitude of naturally occurring hormones, neuro-
transmitters, and signal transduction molecules, GPCRs have
proven to be successful targets for the development of drugs
that modulate receptor function. Hence investigation of the
mechanisms that regulate GPCR receptor signaling and the
implications of repeated receptor stimulation is of interest to
scientists and has direct relevance for the clinical use of
long-acting GPCR agonists. GPCR signaling is tightly regu-
lated at the cellular level, and even low-level receptor
stimulation can lead to rapid receptor desensitization and/or
receptor down-regulation (For review, see [248]). Taken
together, these processes can lead to attenuated receptor sig-
naling and potentially diminish the effect of natural and
synthetic GPCR ligands.

Although limited data is available regarding the regula-
tion of Family B GPCRs, members of the glucagon receptor
subfamily significantly desensitize upon receptor activation.
Rapid agonist-dependent (homologous) and -independent
(heterologous) glucagon receptor desensitization was ob-
served in cultured hepatocytes and was found to be depend-
ent on protein kinase C (PKC) activity and independent of
intracellular cAMP concentrations [249, 250]. Prolonged
agonist stimulation resulted in extensive receptor down-
regulation at the cell surface accompanied by delayed resen-
sitization of glucagon signaling [249]. However, the role of
glucagon receptor desensitization in vivo, or in the setting of
experimental or clinical diabetes, has not been extensively
investigated.

A series of elegant studies characterized the mechanisms
regulating GLP-1R desensitization in transfected fibroblasts
and cultured islets. The GLP-1R underwent rapid agonist-
induced desensitization, accompanied by significant receptor
internalization, and heterologous desensitization induced by
PKC activation [251, 252]. A number of serine doublets in
the C-terminus of the GLP-1R were identified by site-
directed mutagenesis as regulators of either homologous or
heterologous receptor desensitization [253, 254]. Currently,
there is no available data on the consequences of repeated or
prolonged GLP-1R activation on receptor signaling or ex-
pression in vivo.

Similarly, the GLP-2R has been shown to undergo rapid
and prolonged desensitization in response to acute agonist
stimulation in transfected fibroblasts and intestinal epithelial
cells. Moreover, agonist treatment stimulated significant
receptor endocytosis via a dynamin-independent, lipid-raft-
dependent mechanism and the reappearance of cell surface
GLP-2Rs was delayed [255]. It has not yet been determined
whether prolonged stimulation of the glucagon, GLP-1, or
GLP-2 receptors, results in extensive down-regulation of
receptor expression via protein degradation; however, this
process has been characterized for other GPCRs. The data
derived from studies of receptor action in vitro indicate that
persistent stimulation of receptor signaling, either though
constant infusion of peptide or the use of long-acting ana-
logues, may theoretically result in the diminution of receptor
signaling or possibly limit the effectiveness of these receptor
agonists in the long-term treatment of human diseases. Nev-
ertheless, there have been no reports suggesting the devel-
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opment of clinically significant desensitization or loss of a
therapeutic response in human studies with long-acting GLP-
1 or GLP-2 analogues in vivo.

SUMMARY

Considerable progress has been made over the past dec-
ade in refining our concepts of PGDP action, employing a
combination of cell based receptor studies, and physiological
experiments using both normal and transgenic rodents and
experimental models of diabetes, obesity, and gastrointesti-
nal diseases. The therapeutic efficacy of glucagon receptor
antagonists or ASOs to reduce glucagon action in preclinical
studies suggests that reducing or blocking glucagon receptor
signaling is a promising approach for the treatment of type 2
diabetes. Furthermore multiple GLP-1R agonists have dem-
onstrated considerable efficacy in clinical trials of diabetic
subjects, and DPP-1V inhibitors are now in late stage clinical
testing for the treatment of type 2 diabetes. Moreover GLP-2
analogues also appear promising in pre-clinical models of
intestinal disease and are being evaluated in human subjects
with compromised gastrointestinal function. Although the
long-term side effects of these different receptor agonists and
enzyme inhibitors remain unknown, their safety profile to
date has been promising. There remains considerable interest
in developing new agents for enhancing PGDP action, either
through stimulation of PGDP secretion, or through develop-
ment of orally active small molecule receptor agonists.
Taken together, the PGDP receptors represent a unique fam-
ily of Family B GPCRs that regulate metabolic functions and
represent attractive pharmaceutical targets for the treatment
of human disease.
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ABBREVIATIONS

PGDP = Proglucagon-derived peptides

GLP-1 = Glucagon-like peptide-1

GLP-1R = Glucagon-like peptide-1 receptor

GLP-2 = Glucagon-like peptide-2

GLP-2R = Glucagon-like peptide-2 receptor

GPCR = G-protein-coupled receptor

GIP = Glucose-dependent insulinotropic polypeptide

VIP = Vasoactive intestinal peptide

PACAP = Pituitary adenylate cyclase-activating poly-
peptide

GHRH = Growth-hormone-releasing hormone

PEPCK = Phosphoenolpyruvate carboxykinase
G-6-Pase = Glucose-6-phosphatase
CREB = Cyclic-AMP response element binding protein
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PGC-1 = Peroxisome proliferator activated receptor
gamma coactivator-1

THG = [I-N alpha-trinitrophenylhistidine, 12-
homoarginine]-glucagon

cAMP = Cyclic adenosine monophosphate

ASO = Anti-sense oligonucleotides

IP = Intervening peptide

MPGF = Major proglucagon fragment

PKA = Protein kinase A

Epac = cAMP/guanine-nucleotide exchange factor

PI-3K = Phosphatidylinositol 3-kinase

ATP = Adenosine triphoshate

PKB = Protein kinase B

PARP = Poly-ADP-ribose polymerase

IAP-2 = Inhibitor of apoptosis protein-2

HbA . = hemoglobin A,

ICV = Intracerebroventricular

NGF = Nerve growth factor

APP = Amyloid precursor protein

CNS = Central nervous system

LV = Left ventricular

AMI = Acute myocardial infarction

DPP-1IV = Dipeptidyl pepsidase-1V

tip = Half-life

MPA = Maleimidoproprionic acid

TPN = Total parental nutrition

DMH = 1, 2-dimethylhydrazine

PKC = Protein kinase C

GRPP = Glicentin-related pancreatic polypeptide

PC = Prohormone convertases
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