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■ Abstract Multiple peptide hormones produced within the gastrointestinal sys-
tem aid in the regulation of energy homeostasis and metabolism. Among these is the
intestinotrophic peptide glucagon-like peptide-2 (GLP-2), which is released follow-
ing food intake and plays a significant role in the adaptive regulation of bowel mass
and mucosal integrity. The discovery of GLP-2’s potent growth-promoting and cyto-
protective effects in the gastrointestinal (GI) tract stimulated interest in its use as a
therapeutic agent for the treatment of GI diseases involving malabsorption, inflam-
mation, and/or mucosal damage. Current research has focused on determining the
physiological mechanisms contributing to the effects of GLP-2 and factors regulating
its biological mechanisms of action. This chapter provides an overview of the biology
of GLP-2 with a focus on the most recent findings on the role of this peptide hormone
in the normal and diseased GI tract.
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REGULATION OF GLP-2 SYNTHESIS, SECRETION,
AND BIOLOGICAL ACTION

Glucagon-like peptide-2 (GLP-2) is encoded within a large proglucagon precursor
that also encodes the sequence of glucagon and GLP-1. Proglucagon is cleaved by
prohormone convertase enzymes in a tissue-specific manner, with PC2 yielding
glucagon and the major proglucagon fragment in the pancreas, or PC1 generat-
ing glicentin, oxyntomodulin, GLP-1, and GLP-2 in the gastrointestinal (GI) tract
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and brain (Figure 1) (30, 42, 65). For a more detailed review of the regulation of
proglucagon gene expression, see (33). Although the proglucagon-derived pep-
tides (PGDPs) elicit a diverse set of biological actions, they all play a significant
role in the regulation of nutrient absorption and/or the maintenance of energy
homeostasis.

Glucagon secretion from islet α-cells is stimulated by hypoglycemia and sup-
pressed following food intake, while GLP-1 and GLP-2 are released from intestinal
L-cells in a 1:1 ratio following nutrient ingestion (32, 44, 86), primarily by meals
rich in carbohydrates and lipids (85, 89, 91, 117). The short-chain fatty acid bu-
tyrate and GLP-2 exhibit overlapping actions within the gastrointestinal tract (102);
supplementation of parenteral nutrition with butyrate in piglets has been shown
to increase plasma GLP-2 concentrations (5, 103). Moreover, secretion of in-
testinal PGDPs is also regulated by glucose-dependent insulinotropic polypeptide
(87), somatostatin (48), gastrin-releasing peptide (88), and neural stimuli (90) in a
species-specific manner. For a more detailed review of the regulation of glucagon-
like peptide secretion, see (12, 31, 38).

The biological half-life of circulating GLP-2 is relatively short (∼7 minutes in
humans) due to extensive renal clearance and rapid degradation by the proteolytic
enzyme dipeptidyl peptidase-4 (DPP-4) (49, 104). The importance of DDP-4 in
the regulation of GLP-2 bioactivity was originally shown in rats, as administration
of exogenous native GLP-2 had only a modest effect on bowel growth due to high
levels of endogenous DDP-4 activity. Administration of a GLP-2 analogue lacking
the N-terminal DPP-4 cleavage site (h[Gly-2]GLP-2) significantly increased bowel
weight in these rats relative to administration of native GLP-2. Moreover, wild-
type GLP-2 was comparatively more efficacious in the induction of bowel growth
in rats deficient in DDP-4 activity (36). The metabolite produced as a result of
DPP-4 cleavage, GLP-2 (3-33), was recently demonstrated to act as a competitive
antagonist of the GLP-2 receptor (GLP-2R), and inhibited GLP-2- and nutrient-
induced mucosal growth in rodents (96, 108). GLP-2 (3-33) may also act as a weak
GLP-2R agonist at pharmacological concentrations. Thus, the biological actions of
GLP-2 may be limited both by its rapid enzymatic degradation and renal clearance,
and through competition with the products of its own degradation. Accordingly,
the degradation-resistant analogue of GLP-2 (h[Gly-2]GLP-2, teduglutide) has
been shown to have increased efficacy compared to wild-type GLP-2 in many
experimental models (8, 34, 36) and is currently being investigated for the treatment
of human gastrointestinal disease (58, 60).

THE GLP-2 RECEPTOR

The GLP-2 receptor was cloned from rat and human hypothalamic and intestinal
cDNA libraries (75) and was classified as a member of the family B secretin-like
subfamily of G protein-coupled receptors based on conserved structure. The GLP-2
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receptor gene has been mapped to human chromosome 17p13.3 and encodes a 553
amino acid protein. The results of mutagenesis studies and Western blot analyses
suggest that during translation, the rat and human GLP-2Rs are likely cleaved
within the endoplasmic reticulum at a predicted signal peptide cleavage site located
within the N-terminal domain, yielding a ∼53 kDa protein after deglycosylation
(40, 75). The GLP-2R recognizes GLP-2, but not related members of the glucagon
peptide family, in a highly specific manner (28, 75).

GLP-2 receptor mRNA transcripts have been detected in the stomach, the small
and large bowel, the brain, and the lung (71, 101, 121). mRNA transcripts were
also found in RNA isolated from normal human cervix, human cervical cancer
tissue, and cervical cell lines (63); however, the functional relevance of GLP-2R
expression in the cervix or in cervical cancer is not yet known. Multiple experi-
mental approaches have localized the GLP-2R to regions within the rodent central
nervous system (CNS) including the hippocampus, hypothalamus, nucleus of the
solitary tract, parabrachial nucleus, supra mammillary nucleus, substantia nigra,
and cerebellum in the rat (71, 101), in addition to the medulla, amygdala, dentate
gyrus, pons, cerebral cortex, and pituitary in the mouse (69). The GLP-2R has been
localized to human enteroendocrine cells (121), murine enteric neurons (7), and
intestinal myofibroblasts (78) (Figure 2). Given the lack of GLP-2R expression in
enterocytes, it is likely that the proliferative and cytoprotective effects of GLP-2
observed in the bowel are indirect.

A role for keratinocyte growth factor (KGF) as a downstream mediator of GLP-
2-stimulated colonic growth in mice has been suggested; however, immunoneu-
tralization of KGF activity appeared to have no effect on GLP-2-induced mucosal
growth within the small intestine (78). Moreover, GLP-2 and KGF exert differen-
tial effects on the bowel in a rat model of short bowel syndrome (113). The precise
mechanisms by which GLP-2 stimulates bowel growth, particularly in the small
bowel, where the most striking effects are seen, remain poorly understood.

Extensive efforts have been undertaken to identify an intestinal cell line that
robustly expresses the endogenous GLP-2R; nevertheless, none have been found
to date. HeLa cells have been shown to express the GLP-2R and exhibit a small but
significant cAMP response following GLP-2 treatment (63); however, the major-
ity of studies characterizing GLP-2R-regulated intracellular signaling pathways
have utilized transfected cell lines. Agonist binding to the GLP-2R results in
dose-dependent activation of adenylyl cyclase, increases in intracellular cAMP,
and activation of PKA in fibroblasts expressing a heterologous rat or human GLP-
2R, as well as in primary cell cultures from the CNS and the intestinal mucosa (63,
71, 75, 112, 122). Furthermore, GLP-2 activates c-fos in cells transfected with
the GLP-2R (122) and in the murine intestinal mucosa (7). When expressed in
HeLa cells, the GLP-2R also couples to the extracellular signal-regulated kinase
(ERK1/2)-MAPK pathway in a Gαi/o-, Gβ/γ-, and Ras-dependent manner that
does not appear to involve transactivation of the epidermal growth factor receptor
(63).
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Like many G protein-coupled receptors, the GLP-2R undergoes significant
down-regulation of signaling upon acute ligand stimulation in vitro. This phe-
nomenon, called receptor desensitization, occurs independently of receptor lipid
raft-dependent internalization and results in a prolonged attenuation of recep-
tor responsiveness to subsequent agonist stimulation (40). Mutagenesis studies
demonstrate that the C-terminal domain of the receptor is not required for cou-
pling to either the adenylyl cyclase or the (ERK1/2)-MAPK signaling cascades
and is dispensable for acute, ligand-mediated receptor desensitization. However,
independent activation of PKA can result in heterologous GLP-2R desensitization,
which requires an intact GLP-2R C-terminus (39). Although the precise mecha-
nisms regulating GLP-2R desensitization are not fully understood, the finding that
the interaction with arrestin-2, a protein identified as a key modulator of GPCR
desensitization, is not required for down-regulation of receptor signaling suggests
that GLP-2R signaling (39) may be regulated by a unique, incompletely character-
ized pathway. Further studies are needed to address whether functional GLP-2R
desensitization occurs in vivo either in response to short-term activation by endoge-
nous GLP-2 or following persistent receptor signaling resulting from exogenous
administration of long-acting GLP-2 analogues.

The mechanisms by which GLP-2 elicits its direct cytoprotective effects on
cells appear to be dependent on the specific apoptotic stimulus and experimental
model. GLP-2R activation in fibroblasts inhibits cycloheximide-induced apop-
tosis in a PKA-independent manner (119); however, PKA regulates the anti-
apoptotic properties of GLP-2R signaling when apoptosis is induced either by
inhibition of phosphoinositide 3-kinase (PI-3K) in transfected cells (63, 120)
or by glutamate in cultured hippocampal neurons (71). Although the cellular
mechanisms by which GLP-2 inhibits apoptosis are not fully understood, GLP-2
signaling inhibits the actions of the proapoptotic molecule glycogen synthase
kinase-3 (GSK3) both in vitro and in vivo, in addition to directly inhibiting Bad
in fibroblasts and increasing Bcl-2 expression within the neonatal pig intestine
(17, 120).

Exogenous GLP-2 significantly increases the proliferation rate of enterocytes
in vivo; nonetheless, the GLP-2R is not expressed within this cell population and
there is inconclusive evidence on whether direct receptor activation stimulates cell
division. Treatment of cultured colonic intestinal cells or astrocytes with GLP-2
results in increased cell proliferation (57, 92, 111). However, fibroblasts expressing
the GLP-2R do not exhibit a significant mitogenic response following treatment
with GLP-2 (63, 122), suggesting that increased cell proliferation is not a direct
effect of GLP-2R activation. Furthermore, GLP-2 treatment inhibits proliferation
in cultured epithelial cells from the small intestine, yet stimulates cell proliferation
in cell lines derived from the large bowel (15), suggesting that GLP-2R activation
of downstream mitogenic effectors may be cell-type- or tissue-specific. The prolif-
erative effects of GLP-2 in cell culture systems are often observed in the absence of
documented expression of the known GLP-2R (92), leaving open the possibility
that GLP-2 may exert some of these effects through as yet undefined receptors
and/or signaling pathways.
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THE ACTIONS OF GLP-2 WITHIN THE
GASTROINTESTINAL TRACT

Initial studies identifying GLP-2 as an intestinotrophic factor demonstrated that
GLP-2 given twice daily to mice significantly increased small bowel weight and
nutrient absorption (35). The increase in bowel mass was mainly attributable to an
increase in crypt cell proliferation, leading to lengthening of the intestinal villi and
a modest expansion of the crypt compartment (35, 36, 43, 110). These effects were
primarily observed in the small intestine, although GLP-2-mediated colonic growth
has also been observed (34, 43, 67, 78). The effects of GLP-2 within the bowel
are reversible, as regression of bowel growth was observed following cessation of
treatment (110). In addition to enhancing enterocyte proliferation, GLP-2 increases
mucosal mass by inhibiting cell death within the intestinal crypt compartment.
Although GLP-2 treatment was able to decrease enterocyte apoptosis in healthy
mice (110), the cytoprotective effects of GLP-2 treatment are more evident in the
setting of gastrointestinal injury or stress (9, 10, 17, 18, 96).

In addition to promoting expansion of the gastrointestinal mucosal surface area,
GLP-2 exerts a number of other actions within the GI tract to promote energy ab-
sorption. GLP-2 stimulates the uptake of luminal nutrients including sugars and
amino acids (14, 25, 61); enhances mucosal hexose transport possibly via increas-
ing GLUT2 insertion in the jejunal-brush border (4, 25, 26); increases the ex-
pression of genes encoding nutrient transporters including the sodium-dependent
glucose transporter 1 (SGLT-1) and immediate early genes such as PC2/TIS7 and
c-fos (7, 24, 27, 54, 83, 84, 100); and increases the expression of multiple enzymes
involved in digestion (14, 81) along the GI tract. GLP-2 administration also de-
creases gastric acid secretion (114) and inhibits antral gastric emptying (11, 13,
76, 115). Pharmacological doses of GLP-2 have been shown to decrease food in-
take in rodents when administered centrally (69, 101); however, reduced hunger or
weight loss has not been observed in human patients receiving subcutaneous injec-
tions or intravenous infusions of either wild-type GLP-2 or the long-acting form
of GLP-2, teduglutide (58, 76, 94, 98). GLP-2 also maintains mucosal integrity
by enhancing intestinal barrier function and decreasing epithelial permeability in
both the normal and injured bowel. Both wild-type GLP-2 and teduglutide reduced
the conductance and flux of ions and macromolecules in the bowel within hours
of treatment (6), and administration of GLP-2 reduces epithelial ion permeability
within the setting of experimental allergy or stress (19, 20). Teduglutide also in-
creased transepithelial resistance and decreased bacterial translocation in a rodent
model of acute necrotizing pancreatitis (64).

GLP-2 AND THE MUCOSAL ADAPTIVE RESPONSE

The majority of GLP-2 actions have been elucidated following exogenous admin-
istration of GLP-2 or degradation-resistant GLP-2 analogues. Studies investigating
the role of endogenous GLP-2 have shown that the peptide hormone plays a critical
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role in the adaptive response to intestinal injury and/or stress. GLP-2 was shown
to augment the growth and absorptive capacity of the intestine following massive
bowel resection (95). Levels of GLP-2 are elevated in rodents and in some human
patients with short bowel syndrome (29, 59, 68, 72, 106, 109). GLP-2 levels in
rats postresection correlated with the magnitude of tissue loss and malabsorption,
and an ongoing elevation of plasma GLP-2 was associated with maintenance of
enhanced crypt cell proliferation (72). Oral nutrients may also further enhance
the effects of GLP-2 in the setting of short bowel syndrome (29, 79). Consistent
with the importance of GLP-2 in the adaptive growth response of the remnant gut
mucosa, immunoneutralization of GLP-2 attenuated intestinal growth following
massive small bowel resection in rats (80).

Marked intestinal hyperplasia has been observed following induction of dia-
betes in rats with streptozotocin (STZ). It was postulated that the increase in bowel
mass was due to increased levels of circulating GLP-2 (41, 107), and treatment
of diabetic rats with insulin reduced intestinal mucosal hyperplasia in association
with reduced circulating levels of GLP-2 (41). Immunoneutralization of GLP-2
diminished STZ-induced intestinal growth in rats, providing further evidence that
endogenous GLP-2 plays a role in this process (50). Furthermore, the GLP-2R
antagonist, GLP-2 (3-33), abrogates the adaptive mucosal hyperplasia associated
with re-feeding following an overnight fast in mice (96). Although enteral inges-
tion of nutrients stimulates the release of GLP-2 from endocrine cells, there are
differences in the biological effects of enteral nutrition versus GLP-2 administra-
tion in pigs in the control of cell proliferation and apoptosis (18), suggesting that
GLP-2 action alone cannot account for all of the intestinotrophic effects attributed
to food ingestion. However, the effects of GLP-2 on apoptosis and proliferation
may be dose-dependent, as lower levels of GLP-2 exert a cytoprotective effect
in the pig intestinal tract, whereas higher pharmacological levels of GLP-2 are
needed to stimulate cellular proliferation (17).

A number of studies have addressed a potential role for GLP-2 in the developing
gastrointestinal system. GLP-2 (1-33) and the GLP-2R are detected in the fetal
and neonatal rat intestine, with the levels of GLP-2R mRNA transcripts being
comparatively higher within the developing GI tract relative to the adult GI tract.
GLP-2 administration increased neonatal body weight and had trophic effects on
the small and large bowel, demonstrating that GLP-2R signaling was functional
in the neonatal rat intestine (70). GLP-2 rapidly increased nitric-oxide-dependent
portal-vein blood flow rate, glucose uptake, and intestinal blood volume in total
parenteral nutrition (TPN)-fed pigs, with increased mucosal blood flow specifically
localized to the proximal small intestine, a region highly sensitive to the trophic
effects of GLP-2 (99). GLP-2 stimulated an increase in both endothelial nitric oxide
synthase protein levels and constitutive nitric oxide synthase activity, providing a
possible mechanism for the observed effects on intestinal blood flow in TPN-fed
piglets (46). Because decreased blood flow to the intestine may contribute to TPN-
induced bowel hypoplasia (77), these data provide a complementary explanation
for the ability of exogenous GLP-2 to maintain bowel mass in the absence of
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enteral nutrients. GLP-2 alone had no effect on intestinal weight or lipid uptake in
suckling or weanling rats, but it prevented the loss of body weight associated with
glucocorticoid administration in suckling rats (55, 56). Furthermore, GLP-2 and
dexamethasone given to lactating mother pigs enhanced lipid absorption in their
suckling offspring. However, this combination therapy may be deleterious in later
life as lipid malabsorption was detected post-weaning (56).

Infants with short bowel syndrome exhibit levels of postprandial GLP-2 that
correlate with nutrient absorption capacity and were predictive of nutritional status
(97). Similarly, children undergoing cancer treatment exhibit circulating levels of
GLP-2 that correlate with the magnitude of enteral nutrient ingestion (2). Whether
GLP-2 supplementation may be beneficial in infants with intestinal dysfunction
has not yet been demonstrated. Although evidence suggests there is a role for
GLP-2 in the intestinal adaptive response to mucosal injury in children and adults,
there is some debate as to the physiological relevance of GLP-2 in fetal gut de-
velopment because exogenous GLP-2 appears to have a variable or diminished
intestinotrophic effect during intestinal development (for review, see 16).

GLP-2 ACTION IN THE SETTING
OF GASTROINTESTINAL DISEASE

Because GLP-2 potently stimulates bowel growth, enhances absorptive function,
and protects the intestinal mucosa from injury, it is not surprising that GLP-2
administration has been investigated as a potential treatment for human gastroin-
testinal disease. GLP-2 has proven to be beneficial in multiple animal models of
short bowel syndrome, and teduglutide is currently in late-phase clinical trials in
humans for treatment of short bowel syndrome. In preclinical studies, adminis-
tration of teduglutide to rats with major small bowel resection restored nutrient
absorptive capacity in the small bowel (95), increased villus and mucosal height
in the jejunum, and improved mucosal glutathione redox status (113). Human pa-
tients with short bowel syndrome who received 400 micrograms subcutaneously
twice a day for 35 days exhibited increased nutrient absorption, delayed gastric
emptying, and increased body weight characterized by an increase in lean mass
and a decrease in fat mass (58). Three weeks of once- or twice-daily administra-
tion of teduglutide to short bowel syndrome patients with varying colon lengths
decreased fecal wet weight and fecal energy excretion, and increased villus height,
crypt depth, and the mitotic index (60).

Initiation of TPN is often associated with significant bowel atrophy. As GLP-2
release in response to enteral nutrients is thought to play a significant role in the
maintenance of bowel mass, it is hypothesized that administration of exogenous
GLP-2 or stimulation of endogenous GLP-2 release may attenuate TPN-induced
reductions in intestinal mucosal weight and function. Rats maintained on TPN
supplemented with GLP-2 were shown to exhibit a reduction in villus hypoplasia
within the small intestine (21, 22). Furthermore, TPN-fed rats with bowel resection
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exhibited increased villus height and intestinal mucosal surface area, decreased in-
testinal permeability, and increased bowel mass and body weight in response to
treatment with GLP-2. Similarly, GLP-2 mimicked the actions of enteral nutrition
in its effects on intestinal structure, lactose digestive and hexose absorptive capac-
ities, and hexose metabolism in TPN-fed piglets (27). In rats, the main mechanism
of GLP-2 action in the setting of experimental bowel resection appeared to be
primarily via the stimulation of crypt cell proliferation (73). In contrast, GLP-
2 administration to TPN-fed piglets produced a decrease in mucosal proteolysis
and an increase in bowel mass that was mainly attributable to antiapoptotic ef-
fects within the crypt compartment (17, 18). However, these differential effects
on apoptosis and proliferation may also be attributable to differential sensitivity
to circulating levels of GLP-2 (17).

The effects of GLP-2 on enhancing barrier function occur fairly rapidly, within
minutes to hours. Teduglutide or native GLP-2 decreased bacterial colonization of
the lymph nodes, pancreas, and the peritoneum in a rodent model of acute necrotiz-
ing pancreatitis (64); reduced the uptake of antigen, the antigen-induced secretory
response, and the number of inflammatory cells in a mouse model of food allergy
(20); and modestly decreased bacterial colonization of the lymph nodes following
burn injury in rats (23). In a murine model of stress, GLP-2 ameliorated bacterial
infiltration and decreased ion and macromolecule transport within regions of the
small and large intestine (19). GLP-2 also reduced the number of mononuclear cells
in the colonic mucosa of the stressed mice. The acute functional effects of GLP-2
on mucosal permeability have also been associated with subsequent ultrastructural
changes in the murine intestinal mucosal (6).

Inflammatory bowel disease (IBD) may involve both the small and large bowel
and produce changes in gut architecture, including crypt distortion and scarring
and/or crypt abscesses. Because GLP-2 improves barrier function and nutrient
absorption while concurrently stimulating bowel growth and regeneration, it may
prove beneficial for the treatment and/or prevention of IBD. In multiple animal
models of IBD, GLP-2 decreased weight loss and reduced intestinal damage by in-
creasing cell proliferation and decreasing cell death, leading to functional restora-
tion of mucosal integrity. In a mouse model of dextran sulfate-induced colitis,
teduglutide reduced weight loss; increased colon length, mucosal area, and crypt
depth; and reduced cytokine gene expression in the colonic mucosa (37). When en-
teritis was induced in mice by administration of the nonsteroidal anti-inflammatory
drug indomethacin, teduglutide significantly improved survival, bowel integrity,
and barrier function (9). GLP-2-treated mice exhibited fewer intestinal ulcerations,
decreased systemic bacteremia, and decreased myeloperoxidase activity and cy-
tokine induction in the small bowel. Similarly, in a rat model of IBD, intravenous
GLP-2 administration reduced mucosal damage, histological lesion score, and the
expression of the proinflammatory mediators TNF-α and IFN-γ (1). Similarly,
rats with IBD receiving GLP-2 experienced decreased diarrhea and attenuated
intestinal inflammation (3).

Although it is clear that GLP-2 is beneficial in rodent models of IBD, there is
little data available on its effectiveness in the prevention or treatment of human
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IBD. Interestingly, while GLP-2 levels are often increased in rodent models of gas-
trointestinal disease (29, 37, 68) and in human patients following bowel resection
(72), no differences in meal-stimulated GLP-2 levels were observed in IBD pa-
tients versus healthy controls (93). However, it has been shown that although total
circulating levels of GLP-2 may remain constant, the ratio of bioactive GLP-2 (1-
33) to the inactive metabolite GLP-2 (3-33) appears higher in human subjects with
either ulcerative colitis or Crohn’s disease (116). This increase in active GLP-2
(1-33) may be due to decreased dipeptidyl peptidase (DDP)-4 activity observed in
IBD patients (116). The potential benefits of teduglutide in human patients with
IBD are currently being examined in clinical trials.

Gastrointestinal ischemia/reperfusion injury occurs when blood is recirculated
into the small intestine following interruption of blood flow and is often the con-
sequence of sepsis, hemorrhagic shock, vascular surgery, small bowel transplan-
tation, or multiple organ failure. In the setting of ischemia/reperfusion injury in
rats, teduglutide improved nutrient absorption and enhanced recovery of mucosal
DNA content (82). Pretreatment of mice with GLP-2 prior to ischemia/reperfusion
injury attenuated the intestinal histological damage and modestly increased vil-
lus height and crypt depth. Bacterial translocation and the production of reactive
oxygen species were also reduced in GLP-2-treated mice, which may be due to
increases in uncoupling protein 2 expression (45).

GLP-2 has been shown to exert beneficial effects when given prior to, during,
and/or following the induction of intestinal damage (9, 66) and in transgenic models
of established IBD (1, 3). Although GLP-2 may have therapeutic benefits at various
stages of intestinal disease, the greatest therapeutic efficacy of GLP-2 has often
been observed when the peptide was given prior to the induction of gut injury (9,
10, 37). Hence, the timing of GLP-2 administration relative to the onset of intestinal
injury may influence its effectiveness. An alternative approach to exogenous GLP-2
administration involves the use of DDP-4 inhibitors to increase levels of bioactive
GLP-2 (1-33). Although inhibition of DPP-4 enhances the intestinotrophic effects
of exogenously administered GLP-2, DPP-4 inhibitors alone have not been shown
to exert significant effects on levels of endogenous GLP-2 (51).

While it is apparent that GLP-2 has therapeutic benefits when administered
alone, several studies have shown that GLP-2 may be administered in combination
with other growth factors. Mice treated with h[Gly2]GLP-2 and either GH or IGF-I
exhibited greater increases in histological parameters of small intestinal growth
than did mice treated only with h[Gly2]GLP-2 (34). Experiments in parenterally
fed rats demonstrated that concurrent treatment with both GLP-2 and epidermal
growth factor resulted in greater small intestinal mass, cell proliferation rate, and
crypt-villus area compared with results obtained when either hormone was given
alone (62). However, GLP-2 may not always be more effective when coadmin-
istered with other therapeutic agents. Although GLP-2 decreased the severity of
ulcerative colitis in mice when given concurrently with aminosalicylates, it failed
to have beneficial effects when administered together with corticosteroids (66).
These studies underline the need to evaluate the efficacy of GLP-2 given in con-
junction with other drugs commonly used to treat GI disorders.
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Gastrointestinal dysfunction often develops in patients receiving chemother-
apy as the cytotoxic drugs inadvertently target the rapidly proliferating intestinal
mucosa. As prophylactic treatment with GLP-2 can decrease the severity of chem-
ically induced gastrointestinal damage and improve survival in multiple animal
models, the cytoprotective potential of GLP-2 has been studied in animals receiv-
ing chemotherapy. When administered to mice prior to treatment with irinotecan
hydrochloride or 5-fluorouracil, GLP-2 improved survival, decreased weight loss,
reduced bacteremia, attenuated epithelial injury, and decreased chemotherapy-
induced apoptosis within the intestinal crypt compartment (10). Although GLP-2
decreased cell death and protected the mucosa from cytotoxic damage in nor-
mal intestinal tissue, it did not interfere with the actions of irinotecan to reduce
tumor size (10). In a subsequent study, biguanides were shown to promote the
secretion of GLP-2, and the coadministration of the biguanide metformin with
valine-pyrrolidide, a DDP-4 inhibitor, attenuated the loss of bowel wet weight
induced by 5-fluorouracil (118). Consistent with a general cytoprotective effect of
GLP-2 within the GI mucosa, teduglutide also protected cells within the murine
small intestine from damage due to gamma-irradiation (8). Taken together, these
studies provide support for the use of GLP-2 in the prevention of intestinal damage
induced by various cytotoxic cancer treatments.

Because GLP-2 is a potent intestinotrophic growth factor, there remains the
possibility that GLP-2 action may promote the formation of intestinal tumors
or potentiate tumor growth. This is of particular concern in patients receiving
chemotherapy for pre-existing cancer, as well as in patients with IBD, who have
an increased risk for the development of colon cancer (74). Short-term GLP-2 treat-
ment had no effect on tumor growth in rats with pre-existing large bowel tumors
(22), and GLP-2 administration did not impair the effectiveness of chemother-
apy to reduce tumor size in mice (10). However, following administration of the
carcinogen 1,2-dimethylhydrazine to mice, one-month administration of a GLP-2
analogue increased the tumor load compared with saline-treated controls (105),
with the tumor-promoting effects of native GLP-2 being significant only for small
polyps. Hence, although the available evidence suggests that GLP-2 may poten-
tiate tumor growth in the setting of carcinogen administration, whether GLP-2
alone potentiates tumor formation has not yet been demonstrated. Table 1 pro-
vides a summary of the physiological actions and therapeutic effects of GLP-2 in
the setting of gastrointestinal disease.

EXTRAINTESTINAL ACTIONS OF GLP-2

During studies investigating the effects of GLP-2 in patients with short bowel syn-
drome, subjects receiving GLP-2 exhibited significant increases in bone density
(47, 58). A five-week course of GLP-2 administration to patients with short bowel
syndrome significantly increased both spinal and hip bone mineral density, which
was accompanied by a decrease in markers of bone turnover (47). Subsequent
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TABLE 1 The physiological and therapeutic effects of GLP-2 in the setting of GI disease∗

Disease model Species Effect(s) of GLP-2 treatment Reference

Short bowel Rat Restored absorptive capacity of bowel (95)

syndrome Increased villus and mucosal height (113)

Improved mucosal antioxidant capacity

Human Increased nutrient absorption (58, 60)

Increased body weight

Delayed gastric emptying

Increased intestinal wet weight (60)

Decreased fecal excretion

Increased villus height, crypt depth, and

mitotic index

Total parenteral

nutrition

Rat Decreased villus shortening and mucosal

thinning

(21, 22)

Increased mucosal surface area and

weight of bowel

(73)

Increased body weight

Increased barrier function

Piglet Decreased mucosal proteolysis and

apoptosis

(17, 18)

Increased bowel mass

Increased intestinal blood volume (46, 99)

Increased portal vein flow rate

Stimulated NOS production and activity

Maintenance of intestinal structure (72)

Maintenance of digestive and absorptive

capacities

Acute necrotizing

pancreatitis

Rat Decreased intestinal permeability (64)

Food allergy Mouse Decreased uptake of antigen (20)

Diminished hypersensitivity reaction in

bowel

Burn injury Rat Reduced loss of bowel mass in response

to burn

(23)

Decreased immunosuppression

Ischemia/reperfusion Rat Improved nutrient absorption (82)

injury Increased mucosal DNA content

Mouse Increased villus height and crypt depth (45)

Decreased bacterial translocation

Decreased reactive oxygen species

production

Increased UCP2 expression

(Continued )
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TABLE 1 (Continued )

Disease model Species Effect(s) of GLP-2 treatment Reference

Irradiation Mouse Decreased apoptosis in the small bowel (8)

Inflammatory bowel

disease

Dextran-induced Mouse Improved survival (37)

colitis Increased colon area

Decreased cytokine expression

NSAID-induced Mouse Decreased lesion number

enteritis Decreased intestinal permeability (9)

Reduced inflammatory response

Antigen-induced Rat Reduced mucosal damage

GI inflammation Decreased expression of TNF-α and

IFN-γ

(1, 3)

Decreased diarrhea

Reduced inflammation

Chemotherapy- Mouse Improved survival

induced mucosal Decreased weight loss

damage Reduced bacteremia (10)

Attenuated epithelial injury

Stress Mouse Improved intestinal barrier function (19)

∗Abbreviations: GI, gastrointestinal; GLP-2, glucagon-like peptide-2; IFN-γ, interferon-gamma; NSAID, nonsteroidal

anti-inflammatory drugs; NOS, nitric oxide synthase; TNF-α, tumor necrosis factor-alpha; UCP2, uncoupling protein 2.

studies in fasting postmenopausal women showed that acute GLP-2 administra-
tion reduced bone resorption, evident by decreased levels of serum C-terminal
telopeptide region of type I collagen and urine deoxypyridinoline (52, 53). How-
ever, the mechanisms by which GLP-2 inhibits bone resorption have not been
characterized and the localization of the GLP-2R in bone has not yet been ascer-
tained. Therefore, it is unclear whether the effects of GLP-2 on bone resorption
and density are mediated via direct action on bone, or through indirect effects on
nutrient absorption and mineral homeostasis.

The GLP-2R has been localized to multiple regions of the rodent CNS. Local-
ization of the receptor within the dorsal medial hypothalamus (69, 101) suggested
that GLP-2 may play a direct role in the regulation of hunger or satiety. Intra-
cerebroventricular (ICV) administration of large amounts of GLP-2 inhibited food
intake in rats (101), and pharmacological doses of ICV GLP-2 produced a mod-
est, yet significant, inhibition of short-term food intake in mice (69). Whereas
the inhibitory actions of ICV GLP-2 on food intake in rats were blocked by the
GLP-1R antagonist exendin (9-39), similar experiments in wild-type mice failed to
demonstrate a role for the GLP-1 receptor in the anorectic actions of GLP-2. Fur-
thermore, the satiety effects of ICV GLP-2 were significantly potentiated in GLP-
1R knockout mice (69). These discrepancies highlight possible species-specific
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differences in GLP-2 action in the brain. Furthermore, studies in humans have not
demonstrated a reduction in food intake following peripheral GLP-2 administra-
tion (58, 94, 98). As the GLP-2R has also been localized to multiple extrahypotha-
lamic regions of the rodent CNS (69, 71), including areas involved in learning
and memory, it seems likely that GLP-2 subserves additional roles within the
brain.

As GLP-2 inhibits apoptosis in the gastrointestinal mucosal, the potential cy-
toprotective actions of GLP-2 have also been determined in the CNS. Treatment
of cultured murine hippocampal neurons with teduglutide significantly inhibits
glutamate-induced apoptosis (71). Hence, GLP-2R activation may also serve a
cytoprotective role within the brain.

CONCLUSIONS AND FUTURE DIRECTIONS

With the prevalence of gastrointestinal dysfunction on the rise, there has been in-
creasing interest in gaining a better understanding of the physiological processes
that regulate gut physiology. Many gut-derived hormones serve as important reg-
ulators of digestion, nutrient absorption, and energy homeostasis. However, few
of these hormones also demonstrate the striking intestinotrophic and reparative
functions associated with GLP-2 action in the gastrointestinal system. The actions
of GLP-2 are mediated via its cognate G protein-coupled receptor, which exhibits
highly localized expression, high specificity of binding, and complex regulatory
mechanisms that control signaling in vitro. All these factors make GLP-2 an at-
tractive drug for the treatment or prevention of gastrointestinal disease in human
subjects.

Although the GLP-2R has primarily been localized to cell populations within
the GI tract, it is also found within specific regions of both the enteric and central
nervous systems. Because GLP-2R signaling exerts antiapoptotic actions in many
cellular systems, one can hypothesize that GLP-2 may also maintain neuronal in-
tegrity within the brain. However, little is currently known about the extraintestinal
functions of GLP-2 or the potential effects of central locally synthesized GLP-2
in the brain. Understanding the mechanisms of GLP-2 action on nutrient absorp-
tion, cell survival, cell proliferation, and gut barrier function will help us to better
understand the complex network of signals regulating intestinal function in the
normal and injured GI tract.
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