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Abstract——Peptide hormones within the secretin-
glucagon family are expressed in endocrine cells of the
pancreas and gastrointestinal epithelium and in spe-
cialized neurons in the brain, and subserve multiple
biological functions, including regulation of growth,
nutrient intake, and transit within the gut, and diges-
tion, energy absorption, and energy assimilation. Glu-
cagon, glucagon-like peptide-1, glucagon-like pep-
tide-2, glucose-dependent insulinotropic peptide,
growth hormone-releasing hormone and secretin are
structurally related peptides that exert their actions

through unique members of a structurally related G
protein-coupled receptor class 2 family. This review
discusses advances in our understanding of how
these peptides exert their biological activities, with
a focus on the biological actions and structural fea-
tures of the cognate receptors. The receptors have
been named after their parent and only physiologi-
cally relevant ligand, in line with the recommenda-
tions of the International Union of Pharmacology
Committee on Receptor Nomenclature and Drug
Classification (NC-IUPHAR).

I. Introduction

Guanine nucleotide-binding protein (G protein)-coupled
receptors have been subdivided into distinct subgroups,
based upon shared structural identity and evolutionary
origin (Josefsson, 1999). Receptors within the family B (or
family 2) subgroup, exemplified by the secretin receptor,
the original family B receptor member (Ishihara et al.,
1991), exhibit less homology with other GPCR1 subfamilies
and consist of three distinct subgroups, with subfamily B1
containing multiple receptors for peptide hormones (Har-
mar, 2001). The genes encoding the structurally related
peptides (Table 1 and Fig. 1) secretin, glucagon, glucagon-
like peptide-1, glucagon-like peptide-2, growth hormone
releasing hormone, and glucose-dependent insulinotropic
polypeptide are expressed in the gastrointestinal tract

and/or brain, and signal through Gs leading to activation of
adenylate cyclase and increased levels of cyclic AMP. A
single proglucagon gene in mammals (Irwin, 2001) encodes
three distinct structurally related peptides, glucagon,
GLP-1, and GLP-2, which exhibit unique biological actions
mediated by separate receptors (Bataille, 1996a,b;
Drucker, 2001c). In contrast, separate receptors for glicen-
tin, oxyntomodulin, and miniglucagon, biologically active
peptides derived from the identical proglucagon precursor,
have not yet been identified (Drucker, 2001c, 2002). Sev-
eral members of the secretin peptide family, including se-
cretin, GLP-1(7–36amide) and growth hormone-releasing
hormone (GHRH) are amidated at the carboxyl terminus,
however amidation is not always an invariant requirement
for biological activity, as the nonamidated GLP-1(7–37) is
equipotent with GLP-1(7–36amide) (Orskov et al., 1993).
Similarly, GHRH, GLP-1, glucose-dependent insulino-
tropic peptide (GIP), and GLP-2 are excellent substrates
for the enzyme dipeptidyl peptidase IV, which inactivates
these peptides following cleavage at the position 2 alanine
or proline (De Meester et al., 1999).

Consistent with the structure of multiple G protein-
coupled receptors within class 2, the secretin receptor
family contains a disulfide bond linking the first and

1Abbreviations: GPCR, G protein-coupled receptor; GLP, gluca-
gon-like peptide; GHRH, growth hormone-releasing hormone; GIP,
glucose inhibitory polypeptide; VIP, vasoactive intestinal peptide;
kb; kilobase(s); BHK, baby hamster kidney; RAMP, receptor activity
modifying protein; RT-PCR, reverse transcription-polymer chain re-
action; PACAP, pituitary adenylate cyclase-activating peptide; GLP-
2R, glucagon-like peptide 2 receptor; PKA, protein kinase A; MAP
kinase, mitogen-activated protein kinase; IGF, insulin-like growth
factor; ERK, extracellular signal-regulated kinase.
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second extracellular loop domains (Asmann et al., 2000),
a signal peptide, and a comparatively large extracellular
domain important for ligand binding. The glucagon re-
ceptor has a region (FQG-hydr-hydr-VAx-hydr-YCFx-
EVQ)—“hydr” being a hydrophobic and “x” any amino
acid—that is highly conserved in all the members of the
glucagon/secretin receptor subfamily. A highly con-
served aspartic acid residue in the extracellular domain
of several family B receptors has been shown to be
critical for ligand binding, as exemplified by the little
mouse mutation that encodes for a mutant GHRH re-
ceptor that fails to bind ligand due to replacement of the
aspartic acid residue at position 7 in the extracellular
domain with a glycine (Lin et al., 1993; Carruthers et al.,
1994; Gaylinn et al., 1999). The nomenclature of the
class 2 secretin family of receptors is comparatively
straightforward, as each receptor is named for its prin-
cipal and only physiologically relevant ligand, with no
significant biologically meaningful cross-reactivity oc-
curring across the spectrum of related peptide ligands
and receptors (Tables 1 and 2).

II. Secretin Receptor

The secretin receptor is prototypic of the class II fam-
ily of GPCRs, being the first member of this group of
receptors to be cloned in 1991 (Ishihara et al., 1991). The
concept of a circulating chemical messenger and even
the introduction of the term “hormone” is related to the
observation by Bayliss and Starling (1902) that a duo-
denal extract could stimulate pancreatic fluid secretion.
That factor was subsequently purified to homogeneity
and identified as a 27-residue linear polypeptide (Fig. 2)
(Mutt et al., 1966) Extensive primary structure-activity
studies of secretin have established that it has a diffuse
pharmacophoric domain, spread throughout the length
of the peptide (Ulrich et al., 1998) consistent with many
of the currently recognized natural agonist ligands of the
class II GPCRs.

Secretin is produced and secreted by secretory gran-
ule-containing endocrine S-cells that are scattered as
single cells within the mucosal layer of the duodenum
and proximal jejunum (Mutt, 1980). Major factors stim-
ulating secretion of this hormone are luminal acid and
fatty acids (Mutt, 1980), consistent with secretin actions
on epithelial cells lining the pancreatic and biliary

ducts, leading to the secretion of alkaline bicarbonate-
rich fluid. This, in turn, helps to neutralize the acidic
chyme emptied from the stomach, protecting the duode-
nal mucosa and providing an optimal pH for the action of
bile acids and pancreatic zymogens. Secretin also slows
gastric emptying to further protect the duodenum from
being overwhelmed by excessively rapid delivery of
acidic chyme.

A. Molecular Basis for Receptor Nomenclature

The secretin receptor cDNA was first identified and
cloned in 1991 (Ishihara et al., 1991). Consistent with
pharmacological studies performed in the precloning
era, the recombinant receptor bound secretin with high
affinity and bound vasoactive intestinal polypeptide
(VIP) with low affinity (Gardner et al., 1976; Ulrich et
al., 1993). Potencies for stimulation of biological re-
sponses of these peptides paralleled their binding affin-
ities. Although secretin can also bind to and activate
other class II family G protein-coupled receptors (such
as the VIP receptor) at low affinity, to date there have
been no other subtypes of the secretin receptor identi-
fied.

Similarly, highly selective agonists that are more sta-
ble or that exhibit enhanced potency, or nonpeptidic
ligands have not yet been described for the secretin
receptor. The most useful antagonist of secretin action is
a peptide analog of secretin having a reduced peptide
bond between residues four and five [(�4,5)secretin]
(Haffar et al., 1991). This is consistent with primary
structure-activity studies that have suggested that the
selectivity of binding is most dependent on the NH2-
terminal portion of the diffuse pharmacophore, whereas
the carboxyl-terminal portion further contributes to
binding affinity and to biological action (Holtmann et al.,
1995; Vilardaga et al., 1995).

B. Endogenous Agonist

The endogenous agonist for the secretin receptor is
the linear 27-residue polypeptide, secretin (Fig. 1), se-
creted by endocrine S-cells in the upper small intestinal
mucosa. This gastrointestinal hormone has now been
isolated and sequenced in multiple animal species (Le-
iter et al., 1994). Minimal sequence differences are
present in pig, cow, dog, rat, sheep, and human secretin,

TABLE 1
Prohormone precursors encoding peptide ligands for the glucagon receptor family

Prohormone
Swiss Prot Peptide (AA) Sequence

AA Mr

121 13,016 P09683 Secretin (27) HSDGTFTSELSRLREGARLQRLLQGLV
180 20,909 P01275 Glucagon (29) HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
180 20,909 P01275 GLP-1 (30) HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
180 20,909 P01275 GLP-2 (33) HADGSFSDEMNTILDNLAARDFINWLIQTKITD
153 17,107 P09681 GIP (42) YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ
108 12,447 P01286 GHRH (44) YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERGARARL
87 9,479 P26349 Exendin-4 (39) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS

GLUCAGON RECEPTOR FAMILY 169



with a fully conserved NH2-terminal domain, and only
residues in positions 14, 15, and 16 exhibiting species-
specific changes. Secretin in mouse and rabbit differs at
residues five and six. It is only when moving to a species
as divergent as the chicken that more substantial se-
quence differences are present, although the NH2 termi-
nus of chicken secretin continues to be somewhat con-
served. Of note, no single species has yet been described
as having more than one normally occurring form of this
hormone, and no molecular variants or mutant forms of
secretin have yet been described.

Consistent with the species variation of the sequence
of secretin, primary structure-activity studies using hor-
mone fragments and peptide analogs have shown that
the NH2-terminal region of the natural hormone pro-
vides key determinants for receptor selectivity, whereas

its carboxyl-terminal region provides determinants for
high affinity binding and biological activity (Holtmann
et al., 1995; Vilardaga et al., 1995). The carboxyl-termi-
nal region of related peptides can be fused to the secretin
NH2 terminus resulting in a chimeric peptide that still
retains high affinity binding and biological activity
(Park et al., 2000).

C. Receptor Structure

The human secretin receptor is predicted to be 440
amino acids in length, having a 21-residue signal pep-
tide that is cleaved during biosynthesis and a deduced
mature protein of 419 residues (Chow, 1995). Secretin
receptors from rat and rabbit have also been cloned
(Ishihara et al., 1991; Svoboda et al., 1998). The rat
receptor (P23811) is 449 amino acid residues, with a

FIG. 1. Family tree of selected members of family B G protein-coupled receptors, as described by Harmar, 2001, and kindly provided by Dr. A.
Harmar.

TABLE 2
Information shown is for the human receptors, followed below by receptors from other species

Receptor Gene Swiss Prot S AA CL Ligands Principal Biological Actions

GHRH GHRHR Q02643 H 423 7p14/15 GHRH GH secretion
Ghrhr P32082 M 423 6
GHRHR P34999 P 423
GHRHR Q02644 R 464

GIP GIPR P48546 H 466 19q13.3 GIP Insulin secretion
GIPR P43219 R 455
GIPR P43218 SH 462

Glucagon GCGR P47871 H 477 17q25 Glucagon Fuel metabolism, glucoregulation
Gcgr Q61606 M 485 11
GCGR P30082 R 485

GLP-1 GLP1R P43220 H 463 6p21 GLP-1, Exendin-4 Insulin and glucagon secretion, gastric
emptying

Glp1r O35659 M 489 17
GLP1R P32301 R 463

GLP-2 GLP2R O95838 H 553 17p13.3 GLP-2 Nutrient absorption, gut mucosal growth
GLP2R Q9Z0W0 R 550

Secretin SCTR P47872 H 440 2q14.1 Secretin Pancreatic secretion
SCTR P23811 R 449

O46502 RB 445

S, species; CL, chromosomal localization; AA, amino acids; R, rat; M, mouse; RB, rabbit; SH, Syrian Golden hamster; P, pig.
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22-residue signal peptide and a 27-residue mature pro-
tein. The rabbit receptor (AF025411) is 445 amino acid
residues, with a 20-residue signal peptide and a 225-
residue mature protein. These sequences are 78 to 83%
identical, with the major variations residing in the sig-
nal peptides and in the carboxyl-terminal tail regions.

The secretin receptor is a seven transmembrane gly-
coprotein having five N-linked carbohydrate groups,
with four of these in the NH2 terminus and one in the
second extracellular loop region. The typical heptaheli-
cal topology of this receptor has been established using
epitope tags and photoaffinity labeling by cell imper-
meant hydrophilic peptide probes (Dong et al., 1999a,b,
2000; Holtmann et al., 1996a, 1995). This receptor has
numerous sites of potential phosphorylation on serine
and threonine residues within the NH2-terminal tail
and intracellular loop regions. Secretin receptor phos-
phorylation has been directly demonstrated (Ozcelebi et
al., 1995; Holtmann et al., 1996b), although the precise
sites of modification have not been defined. There are no
sites of fatty acid acylation or predicted regions having
kinase activity within this receptor. A variant secretin
receptor in which the third exon was spliced out to
eliminate residues 44–79 from the NH2-terminal tail,
has been identified in a gastrinoma, pancreatic cancer,
and pancreatic cell lines. The variant receptor functions
as a dominant-negative molecule and suppresses normal
secretin receptor activity, likely through formation of a
heterodimer with the wild-type receptor (Ding et al.,
2002a).

D. Receptor Gene Structure

The secretin receptor gene is localized to human chro-
mosome two (2q14.1) (Mark and Chow, 1995; Ho et al.,
1999), spans more than 69 kb, and contains thirteen
exons and twelve introns (Ho et al., 1999). The junctions
between the exons interrupt at residues 24, 65, 101, 135,
168, 212, 264, 284, 307, 338, 380, and 394 (numbering of
residues includes the signal peptide) (Fig. 3). The first
four exons encode the critical NH2 terminus of this re-
ceptor. Subsequent junctions are distributed throughout
the loop and transmembrane regions. No alternatively
spliced forms of the secretin receptor have been found to
occur naturally. However, a misspliced form of this re-

ceptor that is missing exon three (leading to an in-frame
deletion of residues 44 through 79 in the NH2-terminal
tail of the mature protein) was isolated from a gastri-
noma in a patient with a false-negative provocative se-
cretin stimulation test (Ding et al., 2002b). This variant
form of the secretin receptor is unable to bind secretin or
to signal in response to this hormone. Of particular
interest, this mutant secretin receptor was shown to
possess dominant-negative activity and inhibited the
ability of secretin to bind and signal at a coexpressed
wild-type secretin receptor (Ding et al., 2002b).

E. Molecular Basis of Receptor Binding and Action

The long and structurally complex NH2 terminus is
critical for binding and action of the natural peptide
agonist ligand (Holtmann et al., 1995). This is an impor-
tant signature region of class II G protein-coupled recep-
tors that contains six conserved cysteine residues be-
lieved to be involved in three intradomain disulfide
bonds critical for establishing functional receptor confor-
mation (Asmann et al., 2000). The secretin receptor NH2
terminus also contains a cysteine residue in a noncon-
served position that is not involved in a disulfide bond
(Asmann et al., 2000). The functional importance of this
region has been established by truncation, site-directed
mutagenesis, chimeric receptors, and photoaffinity la-
beling studies (Dong et al., 1999a,b, 2000, 2002; Holt-
mann et al., 1995, 1996a; Park et al., 2000). It is remark-
able that photolabile residues situated throughout the
pharmacophoric domain of secretin, in positions 6, 22,
and 26 have all been shown to covalently label residues
within the NH2 terminus of the secretin receptor (Dong
et al., 2002). Extracellular loop domains of the secretin
receptor have also been shown to be important regions
for secretin binding, acting as important complements to
the NH2-terminal region (Holtmann et al., 1996a). The
precise mechanism of peptide binding and the roles of
each domain have not yet been well defined.

F. Receptor Distribution

The classical sites for secretin receptor localization
are on epithelial cells within the pancreatic and biliary
ducts (Ulrich et al., 1998). These are the sites of stimu-
lation of bicarbonate-rich fluid that is important to neu-

FIG. 2. Schematic representation of the secretin peptide gene structure. This gene contains four exons, with the first containing 5�-untranslated
sequence, the signal peptide, and a portion of the amino-terminal peptide. The second exon includes the entire mature peptide coding region with a
few residues of both amino-terminal and carboxyl-terminal peptides. The third and fourth exons include portions of the carboxyl-terminal peptide, with
the latter also containing 3�-untranslated sequence. COOH, the secretin carboxyl-terminal peptide; NH2, the amino-terminal peptide as described by
Kopin et al. (1990, 1991).
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tralize gastric acid emptied into the duodenum. Addi-
tionally, secretin receptors are present on pancreatic
acinar cells, gastric epithelial cells, intestinal epithelial
cells, Brunner’s glands, gastric and intestinal smooth
muscle cells, and certain areas of the brain. Receptors at
these sites contribute to pancreatic exocrine secretion
and growth, stimulation of gastric pepsinogen secretion,
inhibition of gastric acid secretion, and inhibition of
gastric emptying and intestinal motility. As noted above,
these actions all work in concert to protect the upper
intestinal tract from the major stimulants of secretin
secretion, acidic chyme in the lumen. Additionally, there
have been potential roles of secretin proposed for islet
cell, renal, and cardiac function, although these actions
are not well defined or understood.

G. Secretin Receptor Signaling

Like most of the other receptors in the class II G
protein-coupled receptor family, the secretin receptor
has been shown to couple to Gs; the secretin receptor
also couples to Gq. Receptor activation leads to increases
in both cAMP and intracellular calcium (Trimble et al.,
1987). Promiscuous coupling is typical of this receptor
family and, like other members, the Gs coupling and
cAMP signaling occur at the lowest concentrations of
hormone and represents the physiological signaling
pathway. The Gq coupling and intracellular calcium re-
sponse occur in response to concentrations of secretin
more than 100-fold higher than those stimulating the
other pathway. Additional events along these signaling
pathways have not been thoroughly examined or de-
scribed.

H. Receptor Regulation

The secretin receptor is phosphorylated in response to
agonist action, although the specific functional impact of
this biochemical event is not well established (Ozcelebi
et al., 1995; Holtmann et al., 1996b). The kinases impli-
cated in secretin receptor phosphorylation include G
protein-coupled receptor kinases and protein kinase C
(Ozcelebi et al., 1995; Holtmann et al., 1996b; Shetzline
et al., 1998). There is no current information regarding
action of G protein-coupled receptor phosphatases that
might be regulated and act on this receptor (Lutz et al.,
1993). The secretin receptor has also been demonstrated
to be internalized into the cell in response to agonist
occupation (Holtmann et al., 1996b). This has been best
studied in model cellular systems, and nothing is yet
known about the behavior of this receptor as it naturally
resides on various cellular populations.

I. Assay Systems

Recombinant secretin receptors expressed on Chinese
hamster cell lines have been extremely useful for anal-
ysis of potential ligands and agonist activity (Ulrich et
al., 1993). The rat pancreatic acinar cell is a natural site
of secretin receptor expression that is a classical cell

biological model system. A problem with its use is the
coexpression of VPAC1 receptors that bind and respond
to low concentrations of VIP and high concentrations of
secretin. These have contributed to the older physiologic
literature that describes secretin-preferring and VIP-
preferring receptors being expressed on these cells
(Gardner et al., 1976).

J. Physiological Roles and Therapeutic Potential

The major physiological roles for secretin relate to
establishing and maintaining an optimal intraluminal
milieu in the duodenum and upper jejunum for digestion
to take place (Mutt, 1980). Once gastric acid enters the
duodenum, it can damage the mucosal cells, precipitate
bile acids, and inactivate pancreatic enzymes. Secretin
is secreted in response to the acid load and many of its
actions involve the direct stimulation of alkaline bicar-
bonate-rich fluid or the slowing of gastric emptying or
intestinal transit to minimize acid exposure and to pro-
vide optimal opportunity for neutralization.

Secretin administration has been used clinically as a
provocative test for gastrin-secreting islet cell tumors
(Isenberg et al., 1972). Although the normal islet cell
does not express the secretin receptor, gastrinoma cells
often express this receptor (Chiba et al., 1989). As noted
above, one of the established causes for a false-negative
provocative test in the gastrinoma syndrome is the mis-
splicing of the secretin receptor (Ding et al., 2002b).

III. The Glucagon Receptor

Glucagon is a 29-amino acid peptide (Bromer et al.,
1956) originally isolated from a side fraction of purified
insulin (Kenny, 1955) as a hyperglycemic factor origi-
nating from the pancreas (Kimball and Murlin, 1923).
Its primary structure is identical in most mammals in-
cluding man, although some amino acid sequence
changes are noted in glucagons from guinea pig or non-
mammalian vertebrates (Irwin, 2001). Glucagon is syn-
thesized mainly in the A-cells present at the periphery of
the islets of Langerhans (Baum et al., 1962) and is also
detected in specific cells in the stomach and intestine in
some species (Baetens et al., 1976), as well as in special-
ized neurons of the central nervous system. Isolation of
cDNAs encoding glucagon (Lund et al., 1982; Lopez et
al., 1983) showed that the peptide is produced from a
160-amino acid precursor, proglucagon, which also con-
tains two additional glucagon-like sequences at its car-
boxyl terminus (GLP-1 and GLP-2), which were subse-
quently shown to display specific biological activities
(Drucker, 1998).

A. Precursor Processing

Tissue-specific post-translational processing of the
NH2-terminal portion of proglucagon (Fig. 3A) (Mojsov
et al., 1986; reviewed in Bataille, 1996b) leads to pro-
duction of glucagon in the pancreatic A-cells. In the
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intestinal L-cells and central nervous system, the car-
boxyl-terminally extended forms, glicentin and oxynto-
modulin (Bataille, 1996a), as well as GLP-1 and GLP-2
and two intervening peptides, IP-1 and IP-2 are pro-
duced. Further processing of glucagon may also produce
the carboxyl-terminal undecapeptide miniglucagon, a
powerful inhibitor of insulin secretion (Dalle et al., 1999,
2002).

B. Biological Activities

The biological activities of glucagon are directed
mostly toward opposing insulin action in the liver in the
control of glucose metabolism primarily via stimulation
of glycogenolysis (Sutherland, 1950; reviewed in Stal-
mans, 1983) and gluconeogenesis from lactate, pyruvate,
glycerol, and certain amino acids (Claus et al., 1983).
Similarly, the ratio of circulating levels of insulin and
glucagon can shift lipid metabolism from storage to re-

lease in specific tissues such as the liver (Steinberg et
al., 1959; Eaton, 1977). Glucagon is also able to directly
stimulate insulin release (Samols et al., 1966) through
its own receptors expressed on pancreatic �-cells (Kawai
et al., 1995; Moens et al., 1998). Although more likely
pharmacological than physiological, glucagon adminis-
tration produces positive inotropic and chronotropic ef-
fects on the heart (Farah, 1983), exerts spasmolytic ef-
fects on gastrointestinal smooth muscle (Diamant and
Picazo, 1983) and growth hormone-releasing activities
(Merimee, 1983).

C. Glucagon Receptors

Rodbell and coworkers (Rodbell et al., 1971a,b) estab-
lished that the glucagon receptor is involved in the ac-
tivation of adenylate cyclase and that intracellular sig-
naling is achieved through GTP-binding heterotrimeric
G proteins of the Gs type. Besides this universally ac-

FIG. 3. A, structure of the mammalian proglucagon gene and the proglucagon-derived peptides liberated in distinct tissues. GRPP, glicentin-
related pancreatic polypeptide; MPGF, major proglucagon-derived fragment; IP, intervening peptide. B, structural organization of the GIP precursor,
as described by Tseng et al. (1993). The upper numbers represent amino acids in the rat pro-GIP sequence; lower numbers correspond to the human
proGIP sequence. C, biosynthesis of GHRH. The GHRH gene includes 5 exons, and alternative untranslated exons 1 are used in different tissues (1P,
placenta; 1B, hypothalamus). The GHRH mRNA encodes a prepro-GHRH precursor protein that is 103–108 amino acids, depending on the species.
This is processed to generate two major peptides. GHRH is 42–44 amino acids, depending on the species, and is generally carboxyl-terminally
amidated, except in rodents. A 30-amino acid GHRH-related peptide has been characterized from rat and mouse. Further processing to generate as
many as five peptide forms has been reported (Nillni et al., 1999) although GHRH and GHRH-RP are the only well characterized products of the
precursor. D, schematic structure of the secretin receptor. Shown is the predicted amino acid sequence and membrane topology of the human secretin
receptor. Highlighted in white lettering on a black background are residues at the junctions of the exons, based on the genomic structure.
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cepted mode of action, which was later shown to be
shared by many other peptides and neurotransmitters,
glucagon may also, at very low doses, activate the phos-
pholipase C/inositol phosphate pathway leading to Ca2�

release from intracellular stores in a physiological con-
text. The signal transduction pathways activated by the
glucagon receptor coupled to calcium release include
stimulation of adenylate cyclase via Gs, and experiments
using BHK fibroblasts implicate a role for both Gs- and
Gi-activated pathways in the Ca2� response to glucagon
(Wakelam et al., 1986; Hansen et al., 1998). Using the
affinity-labeling approach, the hepatic glucagon recep-
tor was isolated as a 62-kDa polypeptide that contained
four N-linked oligosaccharide chains (Iyengar and Her-
berg, 1984).

D. Gene Structure and Expression

Cloning of the rat glucagon receptor cDNA was
achieved via two parallel and simultaneous approaches:
expression cloning (Jelinek et al., 1993) and polymerase
chain reaction-based cloning (Svoboda et al., 1993).
Cloning of the human (Lok et al., 1994; MacNeil et al.,
1994; Menzel et al., 1994) and mouse receptor genes
(Burcelin et al., 1995) followed. The human glucagon
receptor gene is localized to chromosome 17, at 17q25
(Lok et al., 1994; Menzel et al., 1994). The rat and mouse
glucagon receptors are 485-amino acid seven transmem-
brane domain proteins with four N-linked glycosylation
sites and a sequence motif in the third intracellular loop
(RLAR) known to be required for G protein activation.
The human receptor is shorter, with 477 amino acids
and contains a similar (RLAK) G protein-coupling motif
as well as four N-linked glycosylation sites. Mouse and
rat receptors are very similar (93% identity in amino
acid sequence), whereas the human receptor is only 80%
identical to the mouse receptor (Sivarajah et al., 2001).
The glucagon receptor has a region (FQG-hydr-hydr-
VAx-hydr-YCFxEVQ)—hydr being a hydrophobic and x
any amino acid—that is highly conserved in all the
members of the glucagon/secretin receptor subfamily. A
cDNA encoding an amphibian glucagon receptor was
obtained from Rana tigrina rugulosa, the first nonmam-
malian glucagon receptor characterized (Ngan et al.,
1999). More recently, the structures of the receptors
from two more amphibians (Xenopus laevis and Rana
pipiens) were determined (Sivarajah et al., 2001).

Glucagon receptor expression in islet cells is up-regu-
lated by glucose, and glucose-responsive sequences have
been identified in the glucagon receptor gene promoter
(Abrahamsen and Nishimura, 1995; Yamato et al., 1997;
Portois et al., 1999). Agents such as forskolin and
3-isobutyl-1-methylxanthine, which increase levels of
cAMP, and the glucocorticoid dexamethasone, inhibit
glucagon receptor expression in rat islets, whereas so-
matostatin, which reduces cAMP, increases levels of is-
let glucagon receptor RNA transcripts (Abrahamsen and
Nishimura, 1995). Similarly, glucose increases and

agents that augment levels of cAMP decrease glucagon
receptor expression in primary cultures of rat hepato-
cytes (Abrahamsen et al., 1995). Furthermore, levels of
hepatic glucagon receptor mRNA transcripts are down-
regulated following exposure to glucagon in a dose-de-
pendent manner (Abrahamsen et al., 1995).

E. Structure-Activity Relationships

Extensive analysis of glucagon receptor sequences has
identified specific amino acids essential for ligand bind-
ing and signal transduction (Unson and Merrifield,
1994; Christophe, 1996; Buggy et al., 1997; Cypess et al.,
1999; Unson et al., 2000). The importance of an aspartic
acid residue in the extracellular domain for ligand bind-
ing was demonstrated (Carruthers et al., 1994). Struc-
ture-function studies (Unson et al., 1995) resulted in the
conclusions that 1) all seven transmembrane helices are
required for the proper folding and processing of the
receptor; 2) glycosylation does not play an essential role
in its membrane localization or its activity; 3) the amino-
terminal extracellular portion is required for ligand
binding; and 4) most of the distal carboxyl-terminal tail
is not necessary either for ligand binding or for coupling
to adenylate cyclase. The 206–219 segment of the first
extracellular loop is important for both glucagon binding
and receptor activation (Unson et al., 2002). Deletion of
residues 252–259 corresponding to the second intracel-
lular loop appears to lock the protein in the conforma-
tion promoted by divalent cations and prevents the pro-
tein from normal coupling to Gs, and the intracellular i2
and i3 loops play a role in glucagon receptor signaling,
consistent with recent models for the mechanism of ac-
tivation of G protein-coupled receptors (Cypess et al.,
1999). The human glucagon receptor has been shown to
interact with receptor activity modifying proteins
(RAMPs), specifically RAMP2, in transfected fibroblasts
(Christopoulos et al., 2002); however, the potential bio-
logical significance of this interaction for glucagon re-
ceptor expression and activity in vivo has not yet been
determined.

F. Tissue Distribution

The distribution of the glucagon receptor was studied
in the rat and found to be expressed mainly in liver and
kidney and, to a lesser extent, in heart, adipose tissue,
spleen, thymus, adrenal glands, pancreas, cerebral cor-
tex, and throughout the gastrointestinal tract (Svoboda
et al., 1994; Dunphy et al., 1998). Ligand binding studies
have identified glucagon binding sites in rat kidney tu-
bules including the thick ascending limb of Henle’s loop,
the distal convoluted tubule, and the collecting tubule
(Butlen and Morel, 1985). In the rat brain, radioligand
binding studies detected glucagon binding sites in the
olfactory tubercle, hippocampus, anterior pituitary,
amygdala, septum, medulla, thalamus, olfactory bulb,
and hypothalamus (Hoosein and Gurd, 1984b).
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G. Mutant or Polymorphic Receptors

No spontaneous mutations leading to constitutively
active glucagon receptors have been found in humans. A
missense mutation leading to a Gly40 to Ser substitution
has been associated with type 2 diabetes mellitus in
French and Sardinian subjects (Hager et al., 1995) po-
tentially associated with decreased glucagon-dependent
insulin secretion. Alternatively, this mutation may be in
linkage disequilibrium with another gene located in the
same region, as another polymorphism found in intron 8
of the receptor cosegregates with the Gly40Ser mutation
in all individuals tested. A recent study indicates that
there is no linkage between this mutation and type 2
diabetes in Brazilian patients (Shiota et al., 2002). It has
also been suggested that this missense mutation may be
associated, in some individuals, with essential hyperten-
sion (Morris and Chambers, 1996).

H. Glucagon Receptors and the Islets of Langerhans

Authentic glucagon receptors, distinct from receptors
for GLP-1 that may also recognize high concentrations of
glucagon within the islet (Moens et al., 1998), have been
detected in insulin-secreting �-cells by several ap-
proaches (Kawai et al., 1995; Dalle et al., 1999; Huypens
et al., 2000) including use of specific functional antago-
nists and identification of the mRNA encoding the glu-
cagon receptor by Northern blotting and reverse tran-
scription-polymerase chain reaction (RT-PCR)
experiments. Islet glucagon receptors are coupled to ad-
enylate cyclase and trigger insulin secretion. This obser-
vation is intriguing and paradoxical in that glucagon,
which exhibits glycogenolytic and gluconeogenic effects
in the setting of hypoglycemia, is also able to release
insulin. Recent observations have demonstrated that
miniglucagon, the carboxyl-terminal glucagon fragment
also present in mature secretory granules of the A-cells,
is released together with native glucagon (Dalle et al.,
2002). Because of the huge difference in affinity between
the two peptides for their respective receptors (3 to 4
orders of magnitude higher for the smaller peptide),
miniglucagon, a very efficient inhibitor of insulin release
that acts by closure of the �-cell voltage-gated calcium
channels consecutive to membrane repolarization (Dalle
et al., 1999), completely blocks any possible insulino-
tropic effect of glucagon. Consistent with these findings,
although exogenous glucagon stimulates insulin secre-
tion, endogenously released glucagon has no effect on
the magnitude of glucose-induced insulin secretion
(Moens et al., 2002).

I. Competitive Antagonists

Peptide antagonists of the glucagon receptor have
been described, most of which lacked the amino-termi-
nal histidine residue and contained a modified amino
acid at position 9 such as des-His1-[Nle9-Ala11-Ala16]
glucagon (Unson et al., 1991, 1993). A nonpeptidic com-

petitive antagonist of the glucagon receptor (NNC 92-
1687) has also been described (Madsen et al., 1998).
There remains active interest in the search for nonpep-
tide glucagon receptor antagonists, which may be useful
for the treatment of type 2 diabetes (Ling et al., 2001a,
2002; Petersen and Sullivan, 2001; Ladouceur et al.,
2002).

J. Lessons from Transgenic Models

Mice with a targeted disruption of the glucagon recep-
tor, leading to a complete ineffectiveness of glucagon on
its target tissues, have � cell hyperplasia near normal
levels of insulin, mild fasting hypoglycemia, normal lev-
els of fasting cholesterol and triglycerides, and improved
glucose tolerance despite very high levels of circulating
glucagon (Parker et al., 2002; Gelling et al., 2003).

K. Receptors for Other Glucagon Sequence-Containing
Peptides

Nothing is known about the putative molecular struc-
ture of receptors for the related proglucagon-derived
peptides oxyntomodulin (glucagon plus a carboxyl-ter-
minal extension), glicentin (glucagon plus both an NH2-
and carboxyl-terminal extension), or miniglucagon (the
carboxyl-terminal [19–29] glucagon sequence) (Fig. 3).
Whether these peptides act through known members of
the secretin receptor family or exert their actions
through distinct novel receptors, remains unclear. How-
ever, it must be noted that

1. Oxyntomodulin and glicentin, secreted from the
same intestinal L-cells as GLP-1, display specific
biological activities directed toward regulation of
gastric acid secretion and gut motility (Bataille,
1996a), and these peptides appear to act via recep-
tors linked to both the inositol phosphate and cyclic
AMP pathways (Rodier et al., 1999). Intracerebro-
ventricular administration of oxyntomodulin inhib-
its food intake in rats, and this effect is blocked by
the GLP-1 receptor antagonist exendin-(9–39);
however, the specific receptor that mediates this
effect has not yet been identified (Dakin et al.,
2001). Administration of glicentin to rats or mice
produces small bowel growth, although not to the
same extent as the more potent intestinotrophic
peptide GLP-2 (Drucker et al., 1996).

2. Miniglucagon, produced from circulating glucagon
in target-tissues (Bataille, 1996b) and present in
glucagon-containing secretory granules (Dalle et
al., 2002), activates receptors coupled to the plasma
membrane calcium pump (Mallat et al., 1987) via a
Gs or Gs-like GTP-binding protein (Lotersztajn et
al., 1990) in liver and to potassium channels via a
Gi or Go GTP-binding protein in pancreatic �-cells
(Dalle et al., 1999). Studies examining the biologi-
cal actions of glicentin, oxyntomodulin, or miniglu-
cagon in mice with targeted disruption of the re-
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lated glucagon or GLP-1 receptors have not yet
been reported.

IV. The Glucagon-Like Peptide-1 Receptor

Peptidergic signals derived from the intestine aug-
ment the insulin response induced by nutrients (“the
incretin effect”) (Dupre and Beck, 1966; Fehmann et al.,
1995a). This functional connection between the intestine
and the islets of Langerhans was termed the “incretin
axis” or “entero-insular-axis” (Unger and Eisentraut,
1969; Fehmann et al., 1995a). The gut-derived peptides
GLP-1 and GIP are important mediators in this axis
(Fehmann et al., 1995a; Drucker, 1998; Kieffer and Ha-
bener, 1999).

GLP-1, together with GLP-2, oxyntomodulin, and gli-
centin, is derived from post-translational processing of
proglucagon in the intestinal L-cells of the small and
large intestine (Mojsov et al., 1986) (Fig. 3). GLP-1 stim-
ulates insulin secretion in a glucose-dependent manner
via a specific receptor expressed on islet �-cells. GLP-1
also increases proinsulin gene transcription and insulin
production and suppresses glucagon secretion from islet
�-cells (Fehmann and Habener, 1992; Fehmann et al.,
1995a; Drucker, 1998). Whether the effect of GLP-1 on
inhibition of glucagon secretion is direct, via �-cell ex-
pression of the GLP-1 receptor, or indirect, perhaps via
stimulation of insulin or somatostatin secretion, re-
mains unclear (Moens et al., 1996; Heller et al., 1997).
GLP-1 has central nervous system effects resulting in
delayed gastric emptying (Schirra et al., 1997) and ap-
petite regulation (Turton et al., 1996; Gutzwiller et al.,
1999; Verdich et al., 2001), and the circulating peptide
may gain access to the brain from the periphery by
simple diffusion (Kastin et al., 2002). Systemic admin-
istration of GLP-1 in rodents activates the sympathetic
nervous system leading to increased tyrosine hydroxy-
lase gene transcription, enhanced sympathetic outflow,
and increased heart rate and blood pressure (Barragan
et al., 1999; Yamamoto et al., 2002).

A. Identification of the Glucagon-Like Peptide-1
Receptor

GLP-1 receptors were first identified by a combination
of radioligand binding experiments and measurements
of cyclic AMP accumulation using rat insulinoma-de-
rived RIN1046-38 cells (Drucker et al., 1987; Goke and
Conlon, 1988) followed by localization on additional ro-
dent insulinoma cell lines (Fehmann et al., 1995a) as
well as on rat (Moens et al., 1996) and human (Fehmann
et al., 1995b) pancreatic islet �-cells and somatostatin-
secreting cells (Fehmann and Habener, 1991; Gros et al.,
1992). GLP-1 binding sites have also been identified on
isolated rat gastric parietal cells (Uttenthal and
Blazquez, 1990; Schmidtler et al., 1994), human gastric
cancer cells (HGT-1) (Hansen et al., 1988), solubilized
membranes of rat epididymal adipose tissue (Valverde

et al., 1993), 3T3-L1 adipocytes (Montrose-Rafizadeh et
al., 1997), membranes from the rodent thyrotrope cell
line �-TSH (Beak et al., 1996), and in rat lung (Richter
et al., 1990, 1991) and brain (Shimizu et al., 1987; Ut-
tenthal and Blazquez, 1990; Goke et al., 1995; Wei and
Mojsov, 1995).

Analysis of data obtained from binding experiments
with RINm5F cells revealed that GLP-1 binds to a single
class of binding sites (Goke and Conlon, 1988). Cross-
linking studies with 125I-GLP-1 demonstrate a single
band with an apparent molecular mass of 63,000 (Goke
et al., 1989a, 1992). The GLP-1 receptor protein is gly-
cosylated and glycosylation may modulate receptor func-
tion (Goke et al., 1994). Agonists at the receptor include
GLP-1(7–37), GLP-1(7–36)amide, the Heloderma sus-
pectum peptides exendin-3 and exendin-4 (Goke et al.,
1993; Thorens et al., 1993), and labeled ligands such as
fluorescein-Trp25-exendin-4 (Chicchi et al., 1997) 125I-
GLP-1, and Tyr39-exendin-4. In contrast, structurally
related members of the glucagon family such as GLP-2,
glucagon, and GIP do not exhibit cross-reactivity at the
GLP-1 receptor at physiologically relevant concentra-
tions.

Agonist potencies at the receptor exhibit a Kd of 0.3
nM for GLP-1(7–37)/(7–36)amide and a Kd of 0.1 nM for
the naturally occurring Gila monster peptide exendin-4
(Goke et al., 1993). The truncated lizard peptide GLP-1
receptor antagonist exendin-(9–39) (Goke et al., 1993;
Thorens et al., 1993) exhibits a Kd of 2.9 nM (Goke et al.,
1993; Thorens et al., 1993). This compound has been
successfully utilized for in vitro (Goke et al., 1993; Tho-
rens et al., 1993) and in vivo studies (Kolligs et al., 1995;
Schirra et al., 1998) for elucidation of the physiological
importance of the GLP-1 receptor. A small nonpeptide
ligand (T-0632) for the GLP-1 receptor has been de-
scribed that binds to the amino-terminal hormone bind-
ing domain with micromolar affinity (Tibaduiza et al.,
2001). Interestingly, this (non)peptide antagonist exhib-
its �100-fold selectivity for the human versus the highly
homologous rat GLP-1 receptor, due to the presence of
Trp versus Ser at position 33 in the human versus rat
receptors, respectively (Tibaduiza et al., 2001). Hence it
may be feasible to develop nonpeptide orally bioavail-
able small molecule GLP-1 receptor modulators for ther-
apeutic purposes.

B. Molecular Characterization of the Glucagon-Like
Peptide-1 Receptor

Molecular characterization of the GLP-1 receptor was
achieved by cloning the rat and human �-cell GLP-1
receptor cDNAs (Thorens, 1992; Dillon et al., 1993; Gra-
ziano et al., 1993; Thorens et al., 1993; Van Eyll et al.,
1994) followed by isolation of cDNAs encoding the rat
lung and the brain GLP-1 receptor (Lankat-Buttgereit et
al., 1994; Wei and Mojsov, 1995). The human receptor
protein consists of 463 amino acids (Van Eyll et al.,
1994). The rat and human GLP-1 receptors exhibit 90%
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sequence identity at the amino acid level. The receptor
sequence contains a large hydrophilic, extracellular do-
main preceded by a short leader sequence required for
receptor translocation across the endoplasmic reticulum
during biosynthesis, and seven hydrophobic membrane-
spanning domains that are linked by hydrophilic intra-
and extracellular loops (Thorens and Widmann, 1996).
Distinct amino acids within the amino-terminal domain
of the receptor are crucial for ligand binding (Parker et
al., 1998; Tibaduiza et al., 2001; Wilmen et al., 1997),
and the region encompassing transmembrane domains 1
to 3 is also involved in ligand binding (Xiao et al., 2000b).
Different domains in the third intracellular loop of the
GLP-1 receptor are responsible for specific G protein-
coupling (and G�s, Gi, and Go activation) (Hallbrink et
al., 2001), and in the best studied cellular model, islet
�-cells, GLP-1 receptor signaling acts predominantly via
Gs to increase cAMP accumulation; however, activation
of downstream signaling pathways may occur in a pro-
tein kinase A-independent manner (Bode et al., 1999;
Holz et al., 1999). GLP-1-mediated closure of ATP-sen-
sitive potassium (KATP) channels, and the differential
effect of ADP levels on KATP channel closure may pro-
vide a cellular mechanism for the glucose-sensitivity of
GLP-1 action in �-cells (Light et al., 2002).

C. The Glucagon-Like Peptide-1 Receptor Gene

The human GLP-1 receptor gene was localized to the
long arm of chromosome 6 (hchr 6p21) (Stoffel et al.,
1993). The GLP-1 receptor gene spans 40 kb and consists
of at least 7 exons. The 5�-flanking and promoter region
of the human GLP-1 receptor gene has been cloned and
functionally characterized (Lankat-Buttgereit and
Goke, 1997). The cell- and tissue-specific transcriptional
regulation of GLP-1 receptor expression has been stud-
ied in cell transfection experiments and is mainly
achieved by selective utilization of positive and negative
control sequences and silencing elements, the latter lo-
cated between �574 and �2921 (Galehshahi et al., 1998;
Wildhage et al., 1999).

D. Tissue Distribution of the Glucagon-Like Peptide-1
Receptor

Studies investigating the distribution of rat and hu-
man GLP-1 receptor mRNA by RNase protection and
RT-PCR detected GLP-1 receptor mRNA transcripts in
pancreatic islets, lung, brain, stomach, heart, and kid-
ney but not in liver, skeletal muscle or adipose tissue of
most species (Wei and Mojsov, 1995; Bullock et al.,
1996). In contrast, GLP-1 receptor transcripts have been
identified in canine muscle and adipose tissue (Sandhu
et al., 1999). Although quantitative comparative analy-
ses of the levels of GLP-1 receptor expression in distinct
isolated cell types are not yet available, Northern blot
and RNase protection analyses demonstrates compara-
tively greater levels of GLP-1 receptor mRNA tran-
scripts in heart and lung compared with other tissues

(Thorens, 1992; Wei and Mojsov, 1995; Bullock et al.,
1996). In rat brain, GLP-1 receptors have been found in
the lateral septum, subfornical organ, thalamus, hypo-
thalamus, interpeduncular nucleus, posterodorsal teg-
mental nucleus, area postrema, inferior olive, and nu-
cleus of the solitary tract (Goke et al., 1995; Shughrue et
al., 1996). Activation of brain GLP-1 receptors likely
occurs via GLP-1 produced in the brainstem, which then
is transported to distant regions of the central nervous
system (Drucker and Asa, 1988; Jin et al., 1988; Larsen
et al., 1997; Merchenthaler et al., 1999) and via activa-
tion of GLP-1 receptors in the area postrema that then
activate brainstem GLP-1� neurons (Kastin et al., 2002;
Yamamoto et al., 2002).

E. Signal Transduction of the Glucagon-Like Peptide-1
Receptor

The GLP-1 receptor is functionally coupled to adenyl-
ate cyclase (Drucker et al., 1987) via the stimulatory G
protein Gs. GLP-1-binding at pancreatic �-cells in-
creases free cytosolic calcium concentrations after cell
depolarization in some but not all cell types (Goke et al.,
1989b; Lu et al., 1993; Yada et al., 1993; Holz et al.,
1995, 1999; Bode et al., 1999). GLP-1-dependent stimu-
lation of intracellular calcium may occur via a ryanod-
ine-sensitive pathway (Holz et al., 1999), and in a cAMP-
dependent, protein kinase A-independent manner
through small G proteins distinct from Gs (Kang et al.,
2001; Kashima et al., 2001).

F. Functional Regulation and Biological Significance
of the Glucagon-Like Peptide-1 Receptor

GLP-1 receptor function has been studied using vari-
ous approaches. Radioligand assays were used to char-
acterize binding at the endogenous receptor expressed in
rat insulinoma cell lines (Goke and Conlon, 1988; Feh-
mann et al., 1995a), recombinant receptors expressed in
transfected COS cells (Thorens, 1992; Thorens et al.,
1993) or transfected Chinese hamster lung fibroblast
(rCHL) cells (Van Eyll et al., 1994). Homologous desen-
sitization and internalization of the GLP-1 receptor is
strictly dependent on the phosphorylation of three
serine doublets within the cytoplasmic tail (Widmann et
al., 1997). Experiments with mutant GLP-1 receptors
revealed that the number of phosphorylation sites cor-
related with the extent of desensitization and internal-
ization. However, the two processes showed a different
quantitative impairment in single versus double mu-
tants suggesting different molecular mechanisms con-
trolling desensitization and internalization (Widmann
et al., 1997). The specific identity of the protein kinases
regulating GLP-1 receptor phosphorylation and receptor
desensitization remain unclear.

Glp1r�/� mice with a targeted genetic disruption of
the GLP-1 receptor gene demonstrate modest glucose
intolerance and fasting hyperglycemia with defective
glucose-stimulated insulin secretion (Scrocchi et al., 1996).
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Glp1r�/� mice also exhibit subtle abnormalities in the
hypothalamic-pituitary-adrenal axis, specifically, an ab-
normal corticosterone response to stress (MacLusky et al.,
2000). Despite the putative importance of GLP-1 as a sa-
tiety factor, even combined disruption of leptin and GLP-1
action as exemplified by generation and analysis of a dou-
ble mutant ob/ob:Glp1r�/� mouse, did not modify weight
gain or feeding behavior beyond that observed in the con-
trol ob/ob mouse alone (Scrocchi et al., 2000). Similarly,
although exogenous administration of GLP-1 receptor li-
gands stimulates islet neogenesis and proliferation (Stof-
fers et al., 2000), complete disruption of Glp1r�/� signaling
produces only modest defects in islet formation and topog-
raphy (Ling et al., 2001b) and does not impair up-regula-
tion of insulin gene expression or development of islet
hyperplasia in the setting of leptin deficiency (Scrocchi et
al., 2000). These findings illustrate the complexity of infer-
ring the physiological importance of receptor function from
studies of knockout mice in vivo (Seeley et al., 2000).

G. The Glucagon-Like Peptide-1 Receptor as a
Therapeutic Target

GLP-1 receptor agonists are being evaluated for clin-
ical use as antidiabetic agents (Byrne and Goke, 1996;
Drucker, 2001a; Zander et al., 2002). Since the half-life
of the naturally occurring peptide in plasma is too short
for optimal clinical use, long-acting degradation resis-
tant GLP-1 analogs have now been developed (Deacon et
al., 1998; Ritzel et al., 1998; Burcelin et al., 1999a; Siegel
et al., 1999; Doyle et al., 2001; Xiao et al., 2001), and
these analogs, together with the lizard peptide ex-
endin-4, are being assessed in studies of patients with
type 2 diabetes (Agerso et al., 2002; Egan et al., 2002;
Juhl et al., 2002).

The overexpression of the GLP-1 receptor in insulin-
releasing INS-1 cells increases the potency and efficacy
of D-glucose on insulin gene transcription by a putative
autocrine signaling mechanism (Chepurny and Holz,
2002). This observation affirms the idea that �-cell lines
could be engineered for efficient glucose-dependent in-
sulin synthesis and secretion by overexpression of the
GLP-1 receptor. Alternatively, genetic engineering of
cells for expression of GLP-1 receptor ligands has also
been proposed (Burcelin et al., 1999b).

Activation of GLP-1 receptor signaling has been pro-
posed as a therapeutic strategy for treatment of periph-
eral diabetic neuropathy and other neurodegenerative
processes. GLP-1, and its longer-acting analog ex-
endin-4, completely protected cultured rat hippocampal
neurons against glutamate-induced apoptosis (Perry et
al., 2002a), and GLP-1 promotes nerve growth factor-
mediated differentiation in PC12 cells (Perry et al.,
2002b). Activation of GLP-1 receptor signaling also pro-
motes proliferative and anti-apoptotic actions in the en-
docrine pancreas, providing a potential opportunity for
interventions directed at expanding �-cell mass in sub-
jects with diabetes (Li et al., 2003; Drucker, 2003).

V. The Glucagon-Like Peptide-2 Receptor

GLP-2 was first identified as a novel peptide encoded
within the mammalian proglucagon cDNA sequence
(Fig. 3) carboxyl-terminal to GLP-1 (Bell et al., 1983a,b),
and subsequent isolation and characterization of the
peptide from porcine and human small bowel confirmed
the synthesis and liberation of full-length GLP-2(1–33)
(Buhl et al., 1988). The GLP-2 amino acid sequence is
flanked by pairs of dibasic residues characteristic of
prohormone cleavage sites. GLP-2 is cosecreted along
with GLP-1, oxyntomodulin, and glicentin from intesti-
nal endocrine cells (Mojsov et al., 1986; Orskov et al.,
1986). The principal role of GLP-2 appears to be the
maintenance of growth and absorptive function of the
intestinal mucosal villus epithelium (Drucker et al.,
1996). GLP-2 administration to rodents enhances villus
growth and increases small bowel mass, with weaker
but detectable trophic effects observed in the large bowel
and stomach (Drucker et al., 1997a,b; Tsai et al.,
1997a,b). GLP-2 also rapidly up-regulates hexose trans-
port and nutrient absorption (Cheeseman and Tsang,
1996; Brubaker et al., 1997) and enhances sugar absorp-
tion and intestinal adaptation in rats following major
small bowel resection (Scott et al., 1998). GLP-2 reduces
intestinal permeability in rodents within hours of pep-
tide administration in vivo but has no effect on mucosal
permeability when administered in vitro (Benjamin et
al., 2000), consistent with the established indirect ac-
tions of GLP-2 (Drucker, 2001b).

A. Biological Activity

The trophic and proabsorptive actions of GLP-2 have
prompted studies of whether pharmacological GLP-2 ad-
ministration may produce beneficial effects in rodent
models of intestinal disease. GLP-2 treatment amelio-
rates the severity of small bowel enteritis and facilitates
adaptive small bowel mucosal repair following surgical
or chemical injury in both rats and mice (Chance et al.,
1997; Scott et al., 1998; Boushey et al., 1999; Alavi et al.,
2000; Prasad et al., 2000, 2001). A GLP-2 analog also
reduces weight loss and facilitates mucosal healing in
mice with experimental colitis (Drucker et al., 1999b). A
pilot study of GLP-2 administration for 4 weeks to hu-
man subjects with short bowel syndrome produced sig-
nificant improvement in lean body mass, intestinal his-
tology, and energy retention (Jeppesen et al., 2001).
Although the CNS actions of GLP-2 remain poorly un-
derstood, pharmacological administration of intracere-
broventricular GLP-2 modestly and transiently reduces
food intake in rats and mice (Tang-Christensen et al.,
2000; Lovshin et al., 2001).

B. Receptor Structure and Localization

Although GLP-2 binding sites have not yet been re-
ported on cell lines expressing an endogenous GLP-2
receptor, GLP-2 activates adenylate cyclase in rat hypo-
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thalamic and pituitary membranes (Hoosein and Gurd,
1984a), and administration of radiolabeled GLP-2 to
rats results in detectable radioligand binding to intesti-
nal epithelial cells along the crypt to villus axis
(Thulesen et al., 2000). A cDNA encoding a GLP-2 re-
ceptor was isolated from hypothalamic and intestinal
cDNA libraries using a combined PCR expression clon-
ing approach (Munroe et al., 1999). The GLP-2 receptor
cDNA encodes an open reading frame of 550 amino acids
that gives rise to a structurally related member of the
class 2 glucagon-secretin receptor family (Munroe et al.,
1999). The GLP-2 receptor gene was localized to human
chromosome 17p13.3 and has not yet been linked to
specific human diseases. The GLP-2 receptor is ex-
pressed in a tissue-specific manner in the stomach,
small and large intestine, central nervous system, and
lung (Munroe et al., 1999; Yusta et al., 2000b). GLP-2
receptor expression in the human gut epithelium has
been localized by immunohistochemistry to subsets of
enteroendocrine cells in the stomach, and both small
and large intestine using a polyclonal antiserum (Yusta
et al., 2000b). Although the majority of human enteroen-
docrine cells do not express the GLP-2 receptor, all
GLP-2 receptor-immunoreactive cells identified to date
express one or more gut endocrine markers, including
GIP, peptide YY, serotonin, chromogranin, and GLP-1
(Yusta et al., 2000b). In contrast, the same antisera did
not identify GLP-2 receptor-immunopositive endocrine
cells in rodents, where GLP-2 receptor RNA transcripts
have been localized by in situ hybridization to subsets of
enteric neurons (Bjerknes and Cheng, 2001). These find-
ings imply an indirect model for GLP-2 action whereby
GLP-2 released from enteroendocrine L-cells or rodent
neurons stimulates the release of downstream media-
tors of GLP-2 action (Fig. 4). The downstream mediators
are responsible for the proliferative, anti-apoptotic, and
pro-absorptive effects of GLP-2; however, the identity of
these GLP-2-dependent factors has not yet been estab-
lished.

C. Hormone Binding Activity

Consistent with the original description of GLP-2 ac-
tion in the brain (stimulation of adenylate cyclase activ-
ity) in hypothalamic and pituitary membranes (Hoosein
and Gurd, 1984a), GLP-2 increases intracellular cAMP
in fibroblasts transfected with the rat or human GLP-2
receptor cDNA with an EC50 of 0.58 nM, and binding
studies demonstrate a Kd of 0.57 nM (Munroe et al.,
1999; Yusta et al., 1999; DaCambra et al., 2000). In
contrast, structurally related members of the glucagon
peptide family such as glucagon, GLP-1, GIP, secretin,
growth hormone-releasing factor, pituitary adenylate
cyclase-activating peptide (PACAP), and VIP do not ac-
tivate the transfected rat or human GLP-2 receptor at
concentrations of 10 nM in vitro (Munroe et al., 1999;
DaCambra et al., 2000). Structure-function analyses of
GLP-2 ligand-receptor interactions demonstrate that

both GLP-2(1–33) and GLP-2(1–34) are biologically ac-
tive, and the ability of amino-terminally truncated or
carboxyl-terminally extended GLP-2 derivatives to stim-
ulate GLP-2 receptor-dependent cAMP accumulation in
vitro correlates with the intestinotrophic properties of
these peptides in a murine bioassay in vivo (Munroe et
al., 1999).

The structure-function relationships for GLP-2 recep-
tor activation have been examined through a combina-
tion of alanine scanning and position 2 substitution ex-
periments using the human GLP-2 peptide sequence as
a starting peptide and baby hamster kidney fibroblasts
transfected with the rat GLP-2 receptor (BHK-GLP-2R
cells) (DaCambra et al., 2000). The majority of position 2
h[GLP-2] substitutions exhibit normal to enhanced
GLP-2R binding; in contrast, position 2 substitutions
were less well tolerated for receptor activation as only
Gly, Ile, Pro, �-aminobutyric acid, D-Ala, or nor-Val sub-
stitutions enhanced GLP-2 receptor activation (DaCam-
bra et al., 2000). Alanine-scanning mutational analyses
revealed that alanine replacement at positions 5, 6, 17,
20, 22, 23, 25, 26, 30, and 31 led to diminished GLP-2R
binding (DaCambra et al., 2000). Position 2 residue sub-
stitutions containing Asp, Leu, Lys, Met, Phe, Trp, and
Tyr, and Ala substitutions at positions 12 and 21, which
all exhibited normal to enhanced GLP-2 receptor bind-
ing but greater than 75% reduction in receptor activa-
tion (DaCambra et al., 2000). Circular dichroism analy-
sis indicated that the enhanced activity of these GLP-2
analogs was independent of the �-helical content of the
peptide. GLP-2(3–33), the amino-terminally truncated
product generated following dipeptidyl peptidase IV-me-
diated cleavage of GLP-2(1–33) (Drucker et al., 1997b),
functions as a weak GLP-2 antagonist and partial ago-
nist at the rodent GLP-2 receptor (Thulesen et al., 2002).
Although studies in the rat brain suggest that the GLP-1
receptor antagonist exendin-(9–39) blocks the effects of
pharmacological GLP-2 administration on food intake
(Tang-Christensen et al., 2000), exendin-(9–39) does not
function as an antagonist at the cloned GLP-2 receptor
in vitro (Lovshin et al., 2001), and GLP-2 exhibits en-
hanced anorexic action following intracerebroventricu-
lar administration in mice with complete disruption of
GLP-1 receptor signaling (Lovshin et al., 2001).

D. Intracellular Signaling

GLP-2 activates cAMP production in rodent and hu-
man cells transfected with the rat or human GLP-2
receptors (Munroe et al., 1999; Yusta et al., 1999, 2000a;
DaCambra et al., 2000). Although GLP-2 promotes sig-
nificant enlargement of the gut mucosa following admin-
istration to rodents in vivo, pharmacological concentra-
tions of GLP-2 promote a very weak direct proliferative
response in fibroblasts transfected with the rat GLP-2
receptor (Yusta et al., 1999). Activation of GLP-2 recep-
tor signaling inhibits cycloheximide-induced apoptosis
in BHK-GLP-2R cells, with reduced DNA fragmentation
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and improved cell survival, in association with reduced
activation of caspase-3 and decreased poly(ADP-ribose)
polymerase cleavage and reduced caspase-8- and
caspase-9-like activities (Yusta et al., 2000a). Both
GLP-2 and forskolin reduced mitochondrial cytochrome
c release and decreased the cycloheximide-induced
cleavage of caspase-3 in the presence or absence of a
dominant-negative PKA subunit, or the PKA inhibitor
H-89 (Yusta et al., 2000a). Similarly, GLP-2 increased
cell survival following cycloheximide in the presence of
the MAP kinase inhibitor PD98054 and phosphatidyl-
inositol 3-kinase inhibitor LY294002 (Yusta et al.,
2000a). The anti-apoptotic actions of the rat GLP-2 re-
ceptor in transfected BHK fibroblasts are not strictly
dependent on phosphatidylinositol 3-kinase or Akt, as
GLP-2 directly promotes cell survival, enhances glyco-
gen synthase kinase-3 and BAD phosphorylation, and
reduces mitochondrial-associated BAD and Bax follow-
ing LY294002-induced apoptosis in a PKA-dependent
manner (Yusta et al., 2002).

E. Glucagon-Like Peptide-2 Receptor Expression and
Function in Vivo

Despite the importance of GLP-2 for nutrient absorp-
tion, nutrients have only a modest impact on GLP-2
receptor expression in the gut (Yusta et al., 2000b).
Whether GLP-2 is important for gut development or the
period of intestinal adaptation during transition from
the neonatal to the adult gut remains uncertain. GLP-2
immunoreactivity was detected in the fetal rat intestine,
and fetal rat intestinal cell cultures secreted correctly
processed GLP-2(1–33). High levels of bioactive GLP-
2(1–33) were detected in the circulation of neonatal rats
and GLP-2 receptor mRNA transcripts were detected in
fetal rat intestine and in neonatal stomach, jejunum,
ileum, and colon (Lovshin et al., 2000). The levels of
GLP-2 receptor messenger RNA transcripts were com-
paratively higher in the fetal and neonatal intestine and
declined to adult levels by postnatal day 21 (Lovshin et
al., 2000). Similarly, little is known about the regulation
of GLP-2 receptor expression in the brain. A 1.6-kilobase
fragment of the mouse GLP-2 receptor promoter directs
LacZ expression to multiple regions of the murine CNS
that also coexpress the endogenous mouse GLP-2 recep-
tor. In contrast, the promoter sequences specifying gut-
specific GLP-2 receptor expression remain less well de-
fined (Lovshin et al., 2001). Immunoneutralization of
GLP-2 in the diabetic rat attenuates the adaptive re-
sponse in the small bowel, implicating a role for GLP-2
as a component of the molecular signaling cascade con-
trolling intestinal adaptation (Hartmann et al., 2002).
The physiological importance of GLP-2 in the gut or
brain remains uncertain, due to the lack of either potent
GLP-2 receptor antagonists or murine models of dis-
rupted GLP-2 receptor expression. Similarly, naturally
occurring mutations of the GLP-2 receptor have not yet
been reported. However, mice with disruption of the

prohormone convertase-1 gene exhibited marked reduc-
tions in the intestinal levels of GLP-2, reduced somatic
growth, and diarrhea, suggesting that GLP-2 action may
contribute to regulation of murine intestinal function in
vivo (Zhu et al., 2002).

F. Glucagon-Like Peptide-2 Receptor Activation and the
Treatment of Intestinal Disease

The trophic and anti-apoptotic actions that ensue fol-
lowing activation of GLP-2 receptor signaling in the
rodent intestine have fostered interest in the potential
use of GLP-2 analogs for the treatment of intestinal
disorders. Administration of GLP-2 receptor agonists in
experimental rodent models of intestinal injury amelio-
rates short bowel syndrome secondary to intestinal re-
section, reverses mucosal hypoplasia associated with
parenteral nutrition, attenuates inflammatory disease
in the small and large intestine, and decreases mucosal
damage secondary to vascular ischemia, and chemother-
apy-induced enteritis (Chance et al., 1997, 2000; Scott et
al., 1998; Boushey et al., 1999, 2001; Drucker et al.,
1999b; Kato et al., 1999; Alavi et al., 2000; Prasad et al.,
2000, 2001). As native GLP-2 exhibits a very short half-
life in vivo due principally to enzymatic inactivation by
dipeptidyl peptidase IV (Drucker et al., 1997b; Xiao et
al., 1999, 2000a; Hartmann et al., 2000a,b), protease
resistant GLP-2 analogs have been developed that ex-
hibit longer durations of action and greater potency in
vivo (Drucker et al., 1997b; DaCambra et al., 2000;
Drucker, 2001b). A pilot study of GLP-2 administration
in human subjects with short bowel syndrome demon-
strated significant improvements in energy absorption,
bone density, increased body weight, and lean body
mass, which correlated with increased crypt plus villus
height on intestinal biopsy sections (Jeppesen et al.,
2001).

VI. The Glucose-Dependent Insulinotropic
Peptide Receptor

GIP (gastric inhibitory polypeptide or glucose-depen-
dent insulinotropic peptide) is a 42-amino acid peptide
secreted by endocrine K cells of the duodenum. Secretion
of GIP is triggered by nutrients, either glucose, amino
acids, or fat. Initially, GIP was characterized as a factor
inhibiting the secretion of hydrochloric acid from stom-
ach parietal cells (gastric inhibitory polypeptide). A ma-
jor physiological role as a potentiator of glucose-stimu-
lated insulin secretion was later recognized hence its
second more commonly used name (Dupre et al., 1973).
This insulinotropic function is shared by GLP-1 and both
peptides are thought to represent the major gluco-incre-
tin hormones forming the enteroinsular axis, i.e., the gut
hormonal response to ingested food that potentiates the
effect of glucose on insulin secretion (Unger and Eisen-
traut, 1969). The regions of the receptor involved in
peptide binding include the relatively long extracellular
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amino-terminal domain (Gelling et al., 1997b); however,
both the amino-terminal extracellular and the first
transmembrane domains are necessary for binding and
receptor activation. The carboxyl-terminal cytoplasmic
part of the receptor, in particular serines 426 and 427
(Wheeler et al., 1999) and serine 406 and cysteine 411
(Tseng and Zhang, 1998), are important for receptor
desensitization and internalization.

A. Structure

The GIP receptor cDNA was originally cloned from a
rat brain cortex cDNA library (Usdin et al., 1993) and
encodes a seven transmembrane domain protein consist-
ing of 455 amino acids. Receptor cDNAs were subse-
quently isolated from human (466 amino acid) (Gremlich
et al., 1995; Yamada et al., 1995) and hamster (462
amino acids) (Yasuda et al., 1994) cDNA libraries. The
human receptor gene, located on chromosomal 19q13.3
(Gremlich et al., 1995), contains 14 exons spanning ap-
proximately 14 kb (Yamada et al., 1995). The rat gene
contains 13 exons spanning approximately 10 kb of
genomic DNA (Boylan et al., 1999).

B. Binding Affinity and Antagonists

The GIP receptor binds its ligand with a KD of �0.2
nM (Gremlich et al., 1995). Although the exact sites of
interaction between the receptor and its ligand are not
known, the NH2-terminal part of GIP (residues 1–14
and 19–30) contains a bioactive domain that can acti-
vate cAMP formation (Hinke et al., 2001). GIP(6–30)
has an affinity for the receptor similar to that of full-
length GIP(1–42) but acts as an antagonist, inhibiting
GIP-induced cAMP formation (Gelling et al., 1997a).
GIP(7–30)-NH2 is a potent antagonist that can mark-
edly reduce glucose-stimulated insulin secretion in
fasted rats or blunt the postprandial increase in plasma
insulin levels (Tseng et al., 1996). The truncated lizard
peptide exendin-(9–39) is also an inhibitor of GIP bind-
ing and cAMP formation by GIP-activated receptors
(Gremlich et al., 1995).

GIP is rapidly degraded by the action of the ubiqui-
tous enzyme dipeptidyl peptidase IV (Mentlein et al.,
1993; Kieffer et al., 1995; Pauly et al., 1996). The sub-
stitution of the L-alanine in position 2 of GIP by a D-Ala
residue renders the peptide resistant to degradation and
confers greater insulinotropic activity to the peptide as
revealed by improved glucose tolerance in control and
obese diabetic rats (Hinke et al., 2002). The substitution
of proline for glutamate in position 3 (Pro3)GIP also
generates a peptide resistant to degradation by dipepti-
dyl peptidase IV. This peptide however behaves as an
antagonist that inhibits GIP-induced cAMP production
and insulin secretion by �-cells (Gault et al., 2002).

C. Intracellular Signaling Pathways

GIP binding to its receptor primarily activates adeny-
lyl cyclase and increases intracellular cAMP (Lu et al.,

1993). Activation of the MAP kinase pathway (Kubota et
al., 1997), phospholipase A2 (Ehses et al., 2001), as well
as the phosphatidylinositol 3-kinase/protein kinase B
pathway (Trumper et al., 2001) have also been reported
in �-cell lines following GIP stimulation. These re-
sponses, as well as an increase in [Ca2�]i (Wheeler et al.,
1995), may at least in part be secondary to a rise in
intracellular levels of cAMP. Studies using both trans-
fected Chinese hamster ovary-K1 cells and a �-cell line
INS-1 clone 832/13 demonstrated that GIP induced
phosphorylation of Raf-1 (Ser259), Mek 1/2 (Ser217/
Ser221), ERK 1/2 (Thr202, Tyr204), and p90 RSK
(Ser380) in a concentration-dependent manner (Ehses et
al., 2002). The GIP regulation of ERK 1/2 occurred via
Rap1, but did not involve G�� subunits nor Src tyrosine
kinase (Ehses et al., 2002). Site-directed mutagenesis
was used to create a point mutation (T340P) in the sixth
transmembrane-spanning domain of the GIP receptor,
which confers constitutive, although submaximal, cAMP
forming activity (Tseng and Lin, 1997).

The tissue distribution of the GIP receptor is broad,
with high levels of expression in human, rat, and mouse
pancreatic islet �-cells. The rat GIP receptor has also
been detected by Northern blot analysis or by in situ
hybridization in the gut, adipose tissue, heart, pituitary,
adrenal cortex, osteoblasts (Bollag et al., 2000) endothe-
lial cells (Zhong et al., 2000), cerebral cortex, hippocam-
pus, and olfactory bulb (Usdin et al., 1993; Mazzocchi et
al., 1999). Whether GIP is actually synthesized in the
brain and acts locally within the central nervous system
remains uncertain.

Activation of the receptor in pancreatic �-cells poten-
tiates glucose-stimulated insulin secretion; stimulation
of insulin promoter activity and �-cell proliferation may
also be GIP-regulated responses (Fehmann and Goke,
1995; Trumper et al., 2001). These effects require initial
elevations in intracellular cAMP. The stimulation of in-
sulin secretion is mediated by both protein kinase A-de-
pendent and independent pathways, the latter involving
the cAMP binding protein cAMP-GEF, which is a regu-
lator of the small G protein Rab3 (Ozaki et al., 2000;
Kashima et al., 2001).

There is controversy regarding the action of GIP in
adipose tissue. Some reports describe an effect of GIP on
the stimulation of fatty acid synthesis and an increase in
insulin-stimulated incorporation of fatty acids into trig-
lycerides (Yip and Wolfe, 2000). Other reports describe
GIP stimulation of lipolysis (McIntosh et al., 1999). In
stomach, GIP inhibits gastric acid secretion (Brown,
1982) whereas GIP increases collagen and alkaline phos-
phatase expression in an osteoblast cell line (SaOS2), by
a cAMP-dependent signaling pathway (Bollag et al.,
2000). The effect of GIP on specific vascular beds may be
either vasoconstrictor or vasodilatory (Zhong et al.,
2000). In the rat adrenal cortex, GIP stimulates secre-
tion of corticosterone (Mazzocchi et al., 1999), and in
human adrenal glands, where expression of the GIP
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receptor is low or absent, abnormal overexpression of
the receptor underlies the development of food-depen-
dent Cushing’s syndrome (Reznik et al., 1992; de Herder
et al., 1996).

D. Gene Knockout

The physiological importance of the GIP receptor in
glucose homeostasis was assessed in mice with a tar-
geted disruption of the receptor gene (Miyawaki et al.,
1999). GIPR�/� mice show impaired oral but normal
intraperitoneal glucose tolerance, and glucose tolerance
deteriorated following 3 weeks of high fat feeding. Re-
markably, following several months of high fat feeding,
GIPR�/� mice gained less weight, and exhibited a reduc-
tion in adipose tissue mass and levels of circulating
leptin compared with wild-type controls fed an identical
high fat diet (Miyawaki et al., 2002). Furthermore,
transgenic mice harboring mutations in both the leptin
and GIP receptor genes (ob/ob:GIPR�/�) weighed less
and had decreased levels of blood glucose compared with
ob/ob mice alone, suggesting that elimination of GIP
receptor signaling may protect against the development
of murine obesity (Miyawaki et al., 2002). A combination
of food intake and metabolic expenditure studies sug-
gested that reduced weight gain is attributable primar-
ily to increased substrate oxidation, with no differences
in food intake observed in mice with the absence of GIP
receptor function (Miyawaki et al., 2002). Double gene
inactivation for both the GIP and GLP-1 receptors leads
to comparatively greater glucose intolerance compared
with mice with single incretin receptor knockouts, indi-
cating that GIP and GLP-1 play additive roles in the
control of glucose homeostasis through the entero-insu-
lar axis.

E. Glucose-Dependent Insulinotropic Peptide Receptor
and Type 2 Diabetes

Type 2 diabetes mellitus is characterized by a de-
crease in glucose-stimulated insulin secretion in associ-
ation with a reduced incretin effect (Ebert and
Creutzfeldt, 1987). However, the levels of intact circu-
lating GIP are only minimally reduced or normal in
subjects with type 2 diabetes (Rask et al., 2001; Vilsboll
et al., 2001). This, therefore, suggests that GIP action on
pancreatic �-cells may be reduced in the setting of type
2 diabetes. The role of �-cell resistance to GIP has been
evaluated, and it was demonstrated that pharmacologi-
cal doses of GIP infused intravenously failed to stimu-
late insulin secretion in diabetic human subjects,
whereas GLP-1, at the same infusion rates, produced
very robust secretory responses (Nauck et al., 1993).
Hence a defect in GIP receptor expression and/or signal-
ing may be associated with �-cell dysfunction in type 2
diabetes (Holst et al., 1997). In the diabetic Zucker rat,
decreased responsiveness to GIP is associated with a
decrease in islet GIP receptor expression (Lynn et al.,
2001).

The data demonstrating a link between reduced sen-
sitivity of �-cells to the insulinotropic effect of GIP and
type 2 diabetes suggest that mutations in this receptor
may be diabetogenic. Intriguingly, first degree relatives
of subjects with type 2 diabetes also demonstrate re-
duced insulinotropic responses to exogenous GIP (Meier
et al., 2001). Analysis of the GIP receptor gene in Danish
and Japanese populations revealed the existence of
three allelic variants: Gly198Cys (second extracellular
domain), Ala207Val (second extracellular domain), and
Glu354Gln (sixth transmembrane domain) (Kubota et
al., 1996; Almind et al., 1998). The Gly198Cys variant
leads to decreased cAMP coupling when tested in stably
transfected Chinese hamster ovary cells (Kubota et al.,
1996). No significant association of these variants was
found, however, with type 2 diabetes, except for a small
decrease in fasting levels of C-peptide in individuals
homozygous for Glu354Gln (Almind et al., 1998).

VII. The Growth Hormone-Releasing Hormone
Receptor

The regulation of somatic growth in vertebrate species
is under complex hormonal control. Growth hormone,
secreted from the pituitary gland, acts on many periph-
eral target tissues to alter cellular metabolism, prolifer-
ation, and differentiation. Many of the growth-promot-
ing actions of growth hormone are ascribed to its
stimulation of the synthesis of insulin-like growth fac-
tor-1 (IGF-1), a potent mitogen for many cells. Pituitary
growth hormone synthesis and secretion is regulated by
direct neuroendocrine signals from the brain, as well as
numerous peripheral feedback cues. The predominant
neuroendocrine peptides regulating growth hormone se-
cretion are GHRH, which stimulates growth hormone
synthesis and secretion, and somatostatin, which sup-
presses growth hormone secretion. The first section be-
low gives a brief introduction to the ligand GHRH, its
biosynthesis and activities, and the status of GHRH
agonists and antagonists. This is followed by a discus-
sion of the GHRH receptor, including its hormone bind-
ing and signaling properties, expression and regulation,
and involvement in disease of the growth hormone axis.

A. Growth Hormone-Releasing Hormone

GHRH (sometimes referred to as GRF or GHRF) was
initially isolated from pancreatic tumors that caused
acromegaly (Guillemin et al., 1982; Rivier et al., 1982)
and later characterized from the hypothalamus (Spiess
et al., 1983; Ling et al., 1984b) based on its ability to
stimulate growth hormone secretion from primary cul-
tures of rat pituitary cells. GHRH also stimulates
growth hormone gene transcription (Barinaga et al.,
1983; Gick et al., 1984) and pituitary somatotroph cell
proliferation (Billestrup et al., 1986; Mayo et al., 1988).
GHRH is released from neurosecretory cells in the arcu-
ate nuclei of the hypothalamus (Merchenthaler et al.,
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1984; Sawchenko et al., 1985) and along with the inhib-
itory peptide somatostatin mediates the neuroendocrine
regulation of pituitary growth hormone synthesis and
secretion.

GHRH is also expressed in the placenta, where it may
have paracrine functions or contribute to fetal growth
(Suhr et al., 1989; Margioris et al., 1990); in the gonads,
where it may be an autocrine or paracrine regulator of
steroidogenesis and granulosa or Sertoli cell function
(Berry and Pescovitz, 1988; Bagnato et al., 1992; Ciam-
pani et al., 1992); and in lymphocytes, where it may
modulate lymphocyte activation and immune function
(Stephanou et al., 1991). An important role for GHRH in
post-embryonic growth is suggested by clinical studies of
tumors that secrete GHRH (Frohman and Szabo, 1981;
Thorner et al., 1982; Frohman and Jansson, 1986), and
by animal studies using transgenic mice that overex-
press GHRH (Hammer et al., 1985; Stefaneanu et al.,
1989). In both settings, growth hormone hypersecretion,
pituitary somatotroph cell hyperplasia, and inappropri-
ate patterns of growth (acromegaly or gigantism) are
observed.

GHRH is a peptide hormone of 42–44 amino acids,
depending on the species, which is proteolytically pro-
cessed from a larger precursor protein of 103–108 amino
acids (Fig. 3C) (Mayo et al., 1983, 1985; Frohman et al.,
1989b; Suhr et al., 1989). The GHRH precursor also
encodes an additional carboxyl-terminal peptide that is
reported to modulate Sertoli cell activity in the testis
(Breyer et al., 1996). In submammalian vertebrate spe-
cies, a single gene and precursor protein encodes both
GHRH and PACAP, and PACAP plays a role in growth
regulation that is probably equal to that of GHRH in
most submammalian vertebrate species, except birds
(Montero et al., 2000).

The mature GHRH peptide is amidated at the car-
boxyl terminus in many species, but not in rodents.
Shorter processed forms of the full-length human pep-
tide GHRH(1–44)NH2 have been characterized, with the
predominant forms being GHRH(1–40)OH in hypothal-
amus (Ling et al., 1984b) and GHRH(1–37)NH2 in a
pancreatic tumor (Guillemin et al., 1982; Rivier et al.,
1982). Carboxyl-terminally truncated peptides as short
as GHRH(1–29)NH2 display growth hormone-releasing
activity comparable to that of the full-length peptide
(Ling et al., 1984a; Campbell et al., 1991), and GHRH(1–
29)NH2 has therefore served as the template for the
design of most GHRH agonists and antagonists.

Several modifications to GHRH, including substitu-
tion of the conserved alanine at position 2 with other
residues such as D-alanine, improve in vivo potency
(Lance et al., 1984) largely by inhibition of proteolytic
degradation by dipeptidyl peptidase IV, which rapidly
hydrolyzes the Ala2-Asp3 bond and inactivates GHRH in
serum (Frohman et al., 1989a). Enhancement of the
amphipathic �-helical properties of GHRH by alanine
replacement results in enhanced receptor affinity and

increased potency in in vitro assays (Coy et al., 1996;
Cervini et al., 1998), and an analog with 48% alanine
content, [D-Ala2, Ala8,9,15,16,18,22,24–28]GHRH(1–29)NH2
(NC-9–45), is 1.9 times more potent than the parent
compound (Coy et al., 1996). Analogs combining the
degradation stabilizing replacements at position 2 with
�-helix-enhancing modifications such as the Ala15 sub-
stitution have been particularly effective for increasing
activity in vitro and in vivo (Kubiak et al., 1996). Table
3 summarizes the structures and activities of several of
these GHRH agonists.

Replacement of the conserved alanine at position 2 of
GHRH with D-arginine converts the hormone into a
competitive antagonist (Robberecht et al., 1985). Work-
ing with this compound, a subsequent generation of
potent GHRH antagonists were developed (the MZ se-
ries) containing the helix-stabilizing substitutions
Phe(4-Cl) at position 6, �-aminobutyric acid at position
15, and norleucine at position 27, together with a hydro-
phobic NH2-terminal acyl moiety and a carboxyl-termi-
nal agmatine (Zarandi et al., 1994). Representative ex-
amples include MZ-4-71 and MZ-5-156. A more recent
series of antagonists, the JV series, incorporate arginine
or homoarginine at position 9 and an enzymatically re-
sistant carboxyl-terminal D-Arg28-Har29-NH2 group
(Varga et al., 1999). Representative examples include
JV-1-36 and JV-1-38. These antagonists are being devel-
oped largely as potential antitumor agents, in that they
inhibit the growth of many tumor cells, probably by
suppression of IGF-1 or IGF-2 production (Schally and
Varga, 1999; Kineman, 2000). Table 3 summarizes the
structures and activities of several of these GHRH an-
tagonists.

B. Structure of the Growth Hormone-Releasing
Hormone Receptor

The GHRH receptor was initially cloned from human,
rat, and mouse pituitary, and in these species the iso-
lated cDNAs encode a 423-amino acid protein (Fig. 5)
(Lin et al., 1992; Mayo, 1992; Gaylinn et al., 1993). The
porcine receptor was later identified as a 451-amino acid
protein, but it appears that there are several isoforms
with differing carboxyl-terminal ends, presumably gen-
erated by alternative RNA processing, one of which cor-
responds to the 423-amino acid form (Hsiung et al.,
1993; Hassan, 2001). Bovine and ovine receptors have
also been cloned, and although the bovine GHRH recep-
tor is similar to other mammalian species, the ovine
receptor has a 16-amino acid truncation at its carboxyl
terminus, a characteristic shared with the caprine re-
ceptor (Horikawa et al., 2001). The predicted GHRH
receptor protein has the molecular size expected from
GHRH photoaffinity cross-linking studies, and it is ex-
pressed predominantly in the anterior pituitary gland,
the site of GHRH action (Mayo et al., 1995; Gaylinn,
1999). Figure 5 shows a schematic structure of the
GHRH receptor and shows key features of the receptor
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protein that are referred to in the discussion that fol-
lows.

C. Hormone Binding by the Growth Hormone-
Releasing Hormone Receptor

A variety of radioligands have been used to assess
GHRH binding to its receptor, including [His1, 125I-
Tyr10, Nle27]hGHRH(1–32)NH2 (Seifert et al., 1985),
125I-hGHRH(1– 40)OH (Velicelebi et al., 1985), and
[125I-Tyr10]hGHRH(1– 44)NH2 (Abribat et al., 1990).
The GHRH receptor binds GHRH with subnanomolar
affinity (Mayo, 1992; Gaylinn et al., 1993). Related
peptides such as PACAP and VIP can displace GHRH
binding but only at micromolar concentrations. Li-
gand-binding determinants within the GHRH recep-
tor remain largely unidentified, but several lines of
evidence indicate that the NH2-terminal extracellular
domain plays an important role in GHRH binding.
GHRH interaction with this domain has been demon-
strated using yeast two-hybrid assays (Kajkowski et al.,

1997) and using photoaffinity cross-linking (Gaylinn et
al., 1994a). It is in this domain that a mutation of the
receptor that disrupts GHRH binding occurs in the little
mouse (Gaylinn et al., 1999). Deletion of the NH2-termi-
nal extracellular domain, or insertion of a short epitope
tag into this region, also abolishes GHRH binding
(DeAlmeida and Mayo, 1998). Whereas these studies
indicate an important role for the NH2-terminal extra-
cellular domain in ligand binding, analysis of chimeric
GHRH-VIP and GHRH-secretin receptors suggest that
critical determinants for GHRH interaction are also
found in the membrane-spanning domains and associ-
ated extracellular loops of the receptor (DeAlmeida and
Mayo, 1998).

D. Signaling by the Growth Hormone-Releasing
Hormone Receptor

When the GHRH receptor protein is expressed in
transfected cells, these cells acquire the ability to bind
GHRH with high affinity and selectivity and to respond

TABLE 3
GHRH agonists and antagonists

Agonists Endogenous ligands (human):
GHRH(1–44)NH2, GHRH(1–40)OH, GHRH(1–37)NH2

Selective agonists (only a few representative compounds are listed):
Standard GHRH(1–29)NH2

BIM 28011 [D-Ala2, Ala8,9,15,27, D-Arg29]hGHRH(1–29)NH2 (Coy et al.,
1996)

NC-9-96 [D-Ala2, Aib8,18,24, Ala9,15,16,18,22,24–28]hGHRH(1–29)NH2 (Coy
et al., 1996)

Standard hGHRH(1–40)OH
No. 15 [Ala15, Nle27]hGHRH(1–29)NH2 (Cervini et al., 1998)
No. 29 [MeTyr1, Ala15,22, Nle27]hGHRH(1–29)NH2 (Cervini et al.,

1998)
No. 46 Cyclo(25–29)[MeTyr1, Ala15, D-Asp25, Nle27, Orn29] hGHRH(1–

29)NH2 (Cervini et al., 1998)
Agonist potencies GHRH(1–29)NH2 1.0

BIM 28011 4.9
NC-9-96 2.6
hGHRH(1–40)OH 1.0
No. 15 5.6
No. 29 25.6
No. 26 16.7
Relative growth hormone-releasing potency in vitro on rat pituitary cell cultures compared to either the GHRH(1–

29)NH2 (Coy et al., 1996) or hGHRH(1–40)OH (Cervini et al., 1998) standards
Antagonists Only a few representative compounds are listed:

Standard [Ac-Tyr1, D-Arg2]hGHRH(1–29)NH2 (Robberecht et al., 1985)
MZ-4-71 [Ibu-Tyr1, D-Arg2, Phe(4-Cl)6, Abu15, Nle27]hGHRH(1–28)Agm

(Zarandi et al., 1994)
MZ-5-156 [PhAc-Tyr1, D-Arg2, Phe(4-Cl)6, Abu15,

Nle27]hGHRH(1–28)Agm (Zarandi et al., 1994)
JV-1-36 [PhAc-Tyr1, D-Arg2, Phe(4-Cl)6, Arg9, Abu15, Nle27, D-Arg28,

Har29]hGHRH(1–29)NH2 (Schally and Varga, 1999)
JV-1-38 [PhAc-Tyr1, D-Arg2, Phe(4-Cl)6, Har9, Tyr(Me)10, Abu15, Nle27,

D-Arg28, Har29]hGHRH(1–29)NH2 (Schally and Varga, 1999)
Antagonist [Ac-Tyr1, D-Arg2]hGHRH(1–29)NH2 52% 3.22 nM

potencies MZ-4-71 83% 0.12 nM
MZ-5-156 95% 0.069 nM
JV-1-36 100% 0.042 nM
JV-1-38 98% 0.079 nM
Inhibition of in vitro growth hormone release induced by 1 nM hGHRH(1-29)NH2 by 30 nM antagonist, and

dissociation constant of the inhibitor-receptor complex (Schally and Varga, 1999)
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to GHRH to activate adenylyl cyclase and increase in-
tracellular levels of the second messenger cAMP (Lin et
al., 1992; Mayo, 1992; Gaylinn et al., 1993; Hassan et al.,
1995; DeAlmeida and Mayo, 1998). In somatotroph cells,
GHRH also stimulates an influx of calcium (Holl et al.,
1988; Lussier et al., 1991) most likely through voltage-
sensitive Ca2� channels (Chen et al., 1994). Although
GHRH is reported to stimulate the phospholipase C-
inositol phosphate-calcium mobilization pathway in pi-
tuitary cells in some studies (Canonico et al., 1983; Ohls-
son and Lindstrom, 1990), other studies report no
activation of this pathway (Escobar et al., 1986; French
et al., 1990), and no coupling of the cloned GHRH recep-
tor to this signaling pathway has yet been detected in
transfected cells (Miller et al., 1999). One study suggests
that distinct somatotroph cell subpopulations may re-
spond differently to GHRH with respect to activation of
the phospholipid turnover signaling pathway (Ramirez
et al., 1999). Recent studies demonstrate that GHRH
receptor signaling leads to activation of the MAP kinase
pathway and ERK phosphorylation, at least in some cell
types (Pombo et al., 2000; Zeitler and Siriwardana,
2000), an activity that likely relates to the ability of
GHRH to stimulate somatotroph cell proliferation.

There is little available information on the regulation
of GHRH receptor signaling, but one report indicates

that the receptor undergoes desensitization following
short exposures to ligand (Hansen et al., 2001). In trans-
fected cells, this is a homologous desensitization, but in
rat pituitary cells it appears to be a mixed homologous
and heterologous desensitization. Desensitization of the
GHRH receptor is associated with a rapid internaliza-
tion from the cell surface.

E. Expression and Regulation of the Growth Hormone-
Releasing Hormone Receptor

The predominant site of GHRH receptor expression is
the pituitary gland, where the mRNA has been localized
by RNA blotting and in situ hybridization assays (Lin et
al., 1992; Mayo, 1992; Gaylinn et al., 1993; Godfrey et
al., 1993; Hsiung et al., 1993). Within the pituitary
gland, expression is confined to the anterior lobe (Lin et
al., 1992; Mayo, 1992). It remains uncertain whether
pituitary cells other than growth hormone-secreting so-
matotrophs express the GHRH receptor mRNA. The
receptor mRNA has also been found in the placenta, a
site of GHRH production (Mayo et al., 1996), the kidney
(Matsubara et al., 1995; Mayo et al., 1996) and the
hypothalamus (Takahashi et al., 1995). Using sensitive
RT-PCR/Southern blotting assays, the GHRH receptor
transcript has been found in an extremely wide range of
rat tissues at low levels (Matsubara et al., 1995) al-

FIG. 4. Schematic representation of GLP-2 action in the gastrointestinal epithelium via GLP-2 receptors expressed in the enteric nervous system
(mouse) or enteroendocrine cells (human).
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though the physiological significance of this broad ex-
pression remains unclear. GHRH receptor immunoreac-
tive protein has been demonstrated only in the pituitary
and the kidney (Morel et al., 1999; Boisvert et al., 2002).

GHRH receptor expression in the pituitary is devel-
opmentally regulated (Korytko et al., 1996; Sato and
Takahara, 1997) and sexually dimorphic (Ono et al.,
1995; Mayo et al., 2000). Receptor gene expression is
positively regulated by glucocorticoids (Lam et al., 1996;
Korytko and Cuttler, 1997; Miller and Mayo, 1997) and
thyroid hormone (Miki et al., 1995; Korytko and Cuttler,
1997) and negatively regulated by estrogen (Lam et al.,
1996). GHRH itself may modulate the expression of its
receptor, although investigators have reached somewhat
different conclusions regarding whether this is a posi-
tive or negative regulation, and the effects are likely
dependent on the age of the animal and the duration of
GHRH exposure (Horikawa et al., 1996; Miki et al.,
1996; Aleppo et al., 1997; Girard et al., 1999; Lasko et
al., 2001). In transgenic models with varying levels of
growth hormone expression, the level of circulating
growth hormone may contribute to regulation of GHRH
receptor expression in some tissues (Peng et al., 2001).

F. The Growth Hormone-Releasing Hormone Receptor
Gene and Receptor Splice Variants

The GHRH receptor gene maps to the centromeric
region of mouse chromosome 6 (Godfrey et al., 1993; Lin
et al., 1993) and to human chromosome 7p14/15 (Gay-
linn et al., 1994b; Wajnrajch et al., 1994). The genes for
the GHRH and PAC1 receptors are adjacent genes in the
human genome and probably evolved by gene duplica-
tion (Vaudry et al., 2000). The gene has been character-
ized in detail in the human (Petersenn et al., 1998),
mouse (Lin et al., 1993), and rat (Miller et al., 1999) and
consists of 13 major exons spanning approximately 15
kb of DNA. There is no clear correspondence between
exons of the gene and functional domains of the receptor
protein. Functional analysis of the gene promoter in cell
transfection assays reveals a selective preference for
expression in pituitary cells (Iguchi et al., 1999; Miller et
al., 1999) likely due to the presence of the transcription
factor Pit-1, which positively regulates GHRH receptor
gene expression (Lin et al., 1992; Iguchi et al., 1999;
Miller et al., 1999; Salvatori et al., 2002). Glucocorticoid
regulation has also been mapped to a composite regula-

FIG. 5. Schematic structure of the GHRH receptor. Key features referred to in the text are overlaid onto this linear representation of a generic
GHRH receptor. The black filled amino acids represent the six cysteine residues in the NH2-terminal extracellular domain conserved in this receptor
family, as well as the cysteines in extracellular loops one and two conserved in most GPCRs. Asterisks indicate positions at which introns interrupt
the GHRH coding sequences within the gene. Characterized inactivating mutations in the receptor are indicated by the squares. Also indicated are
several of the best characterized receptor variants, although others have been reported.
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tory element in the receptor gene promoter (Nogami et
al., 2002).

Alternative RNA processing generates a variety of
species-specific GHRH receptor transcripts. In the rat,
an additional exon 11 is included in an alternatively
spliced variant mRNA, resulting in the insertion of 41
amino acids into the third intracellular domain of the
receptor. This variant receptor binds GHRH, but does
not mediate signaling through the cAMP pathway, and
neither receptor isoform is able to stimulate calcium
mobilization from internal stores after GHRH treatment
(Miller et al., 1999). An alternatively spliced form of the
human GHRH receptor that is truncated following the
fifth transmembrane domain has been identified both in
normal pituitary and in pituitary adenomas (Hashimoto
et al., 1995; Tang et al., 1995) and is reported to exert a
dominant inhibitory effect on signaling by the normal
receptor in cotransfection experiments (Motomura et al.,
1998). Additional human GHRH receptor splice variants
have been reported in several different cancers (Rekasi
et al., 2000), and the detection of both GHRH and GHRH
splice variants in human cancers raises the possibility
that GHRH may exert an autocrine effect on regulation
of neoplastic cell growth (Busto et al., 2002; Halmos et
al., 2002). Alternative RNA processing also likely con-
tributes to the carboxyl-terminal heterogeneity observed
for the porcine GHRH receptor (Hsiung et al., 1993) and
for the dwarf rat GHRH receptor (Zeitler et al., 1998).
The two porcine receptor variants differ in their ability
to bind GHRH and activate cAMP production in trans-
fected cells (Hassan, 2001).

G. Mutation of the Growth Hormone-Releasing
Hormone Receptor in Diseases of Growth

An inactivating mutation of the GHRH receptor was
first reported in the little mouse (Godfrey et al., 1993;
Lin et al., 1993). This is an autosomal recessive muta-
tion mapping to chromosome 6 that results in soma-
totroph hyperplasia, growth hormone deficiency, and a
dwarf phenotype in the homozygous mutant animals
(Eicher and Beamer, 1976; Godfrey et al., 1993; Lin et
al., 1993). There is a missense mutation in the GHRH
receptor gene of the little mouse, resulting in replace-
ment of the aspartic acid at position 60 in the NH2-
terminal extracellular domain of the receptor with gly-
cine (Godfrey et al., 1993; Lin et al., 1993). This
mutation does not affect the expression or cellular local-
ization of the mutant receptor protein, but it abolishes
binding of GHRH by the mutant receptor, resulting in a
loss of GHRH signaling and subsequent defects in soma-
totroph proliferation and function (Gaylinn et al., 1999).

Several mutations leading to inactivation of the
GHRH receptor have been reported in humans. Three
distinct kindreds from India (Wajnrajch et al., 1996),
Pakistan (Baumann and Maheshwari, 1997), and Sri
Lanka (Netchine et al., 1998) have been reported that
have a nonsense mutation truncating the GHRH recep-

tor at position 72 in the NH2-terminal extracellular do-
main. A Brazilian kindred has a mutation in a splice
donor site that leads to retention of the first intron, a
shift in the translational reading frame, and truncation
of the receptor protein at position 20, near the probable
signal sequence cleavage site (Salvatori et al., 1999). A
Japanese boy with a four base deletion in exon 12, re-
sulting in a premature translational stop codon, has
been described (Horikawa, 2002). Three new point mu-
tations in the GHRH receptor gene in familial isolated
growth hormone deficiency 1B have recently been re-
ported (Salvatori et al., 2001a) and all three mutant
receptors are inactive in cell transfection assays. There
is one report of a regulatory mutation in which a Pit-1
binding site in the GHRH receptor promoter is disrupted
(Salvatori et al., 2002). Activating mutations of the
GHRH receptor in human disease have been looked for,
focusing on growth hormone-secreting pituitary ade-
noma and changes within the third cytoplasmic loop and
sixth transmembrane domain of the receptor, but to date
no clear mutations have been identified (Lee et al., 2001;
Salvatori et al., 2001b).

VIII. Summary

Peptide hormone receptors within the class 2 secretin
receptor family exert multiple biologically important ac-
tions that regulate somatic growth, energy intake, nu-
trient absorption and disposal, and cell proliferation and
apoptosis. Remarkably, multiple receptor agonists
within this family are currently approved drugs utilized
for diagnostic or therapeutic purposes, or under active
clinical investigation for the treatment of specific human
disorders. Hence, secretin may be used clinically for
assessment of pancreatic function or for analysis of gas-
trin secretion in subjects with gastrinomas, and secre-
tin-based therapies remain under investigation for the
treatment of human diseases such as autism (Coniglio et
al., 2001). GHRH is administered as a diagnostic chal-
lenge for the assessment of pituitary growth hormone
reserve, and GHRH analogs, as well as GHRH receptor
ligands, are under active investigation for conditions
characterized by relative or absolute growth hormone
deficiency (Gaylinn, 1999). Glucagon is utilized in the
radiology suite for manipulation of gastrointestinal mo-
tility and as an agent to restore blood glucose in the
setting of insulin-induced hypoglycemia (Muhlhauser et
al., 1985). Conversely, glucagon receptor antagonists
may potentially be useful for the treatment of diabetes
mellitus (Zhang and Moller, 2000; Petersen and Sulli-
van, 2001; Ling et al., 2002). Similarly, GIP analogs
continue to be assessed for potential utility in the treat-
ment of type 2 diabetes (O’Harte et al., 1999, 2000), and
disruption of the murine GIP receptor gene promotes
resistance to weight gain and enhanced energy expendi-
ture, suggesting that GIP receptor antagonism merits
consideration for the treatment of obesity (Miyawaki et
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al., 2002). Similarly, dipeptidyl peptidase-IV-resistant
analogs of GLP-1 and GLP-2 are in clinical trials for the
treatment of diabetes and intestinal disorders, respec-
tively (Drucker, 1999a, 2001a,b, 2002). Hence, addi-
tional insights into the structural and functional prop-
erties of class 2 secretin receptor family members may
provide information important not only for basic under-
standing of peptide hormone action but should form a
rational scientific basis for design of novel agents tar-
geted toward treatment of a diverse set of human dis-
eases.
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