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ABSTRACTQ4

Background: The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous
metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake,
increase of natriuresis and diuresis, and modulation of rodent b-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases
inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for
enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several
GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity.
Scope of review: In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its
therapeutic implications on various diseases.
Major conclusions: Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond
its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the
development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders

� 2019 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. FROM THE DISCOVERY OF INSULIN TO THE DISCOVERY OF
GLP-1Q5

Maintenance of adequate glucose metabolism is a prerequisite for
human health, and pathological failure to buffer against prolonged
episodes of hypo- and/or hyperglycemia can result in severe micro-
vascular disease, metabolic damage, coma, and death. Unsurprisingly,
before the discovery and commercialization of insulin in the 1920’s,
juvenile-onset diabetes, with its paucity of endogenous insulin, was a
disease with only a few years between a patient’s diagnosis and
premature demise. The discovery of insulin and its ability to lower

blood glucose transformed juvenile-onset (type-1) diabetes from a fatal
to a manageable disease. However, early on, it was noted that insulin
derived from pancreatic extracts [1] or as crude insulin preparations [2]
sometimes first elevated blood glucose and then later decreased blood
glucose levels. The increase in blood glucose, which peaked around
20 min after the administration, was believed to be caused by a toxic
fraction resulting from suboptimal insulin purification [2]. The same
toxic fraction was thought to be responsible for local skin irritations and
abscesses that were sometimes observed in patients treated with
these formulations [2]. These observations spurred efforts to optimize
the isolation and purification of insulin from tissue homogenates.
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Aiming to develop a fast and inexpensive method for commercial in-
sulin purification, in 1923, Charles Kimball and John Murlin precipi-
tated a pancreatic fraction that, after evaporation and reconstitution in
water, had a robust hyperglycemic effect when injected into rabbits
and dogs [3]. Because the fraction was incapable of decreasing blood
glucose, Kimball and Murlin hypothesized that the hyperglycemic ef-
fect resulted from a secreted factor, one that antagonizes insulin’s
hypoglycemic effect. The factor was named ‘the glucose agonist’, or
“glucagon” [3]. Over the subsequent decades, substantial research
efforts were directed toward unravelling the molecular underpinnings
of glucose regulation by the two opposing pancreatic hormones (as
reviewed in [4,5]). Among the numerous major discoveries made in
this regard was the finding that the hyperglycemic effect of glucagon
resides in its ability to act in the liver to stimulate glycogenolysis and
gluconeogenesis [6e12] despite its seemingly paradoxical ability to
stimulate insulin secretion in humans reported by Ellis Samols in 1965
[13]. In the early 1950’s, Earl Sutherland and Christian de Duve
demonstrated that pancreatic glucagon production was abolished
when the function of islet a-cells was compromised by treatment with
either cobalt or synthalin A but was preserved upon alloxan-induced
impairment of the exocrine pancreatic acinar and islet b-cells
[14,15]. Subsequent histological studies by Claes Hellerstrom and Bo
Hellman divided a-cells into a1-and a2-subtypes, but it was not until
the early 1960s that convincing evidence was provided that a2-cells
were the source of glucagon [16]. This conclusion was based on
suppression of a2-cell numbers in rats and guinea pigs by adminis-
tration of exogenous glucagon [17,18] plus the strong staining in a2-
cells for tryptophan, which is an amino acid present in glucagon. Later,
a1-cells were shown by Bo Hellman and Ake Lernmark to be the
source of an inhibitor of insulin secretion [19]. This was eventually
established as somatostatin.
In 1959, Roger Unger generated and characterized the first glucagon-
detecting antibody and thus paved the path to the development of the
first radioimmunoassays (RIA) to detect glucagon in blood and tissue
samples [20]. It was subsequently found by Ellis Samols and Vincent
Marks in 1966 [21] and confirmed by others that glucagon-like
immunoreactivity was also present in extra-pancreatic tissues, in
particular in the intestine [22e27]. Notably, the circulating glucagon-
like material was also detected in 1967 by Samols and Marks in
pancreatectomized humans [21] and in the following year by Roger
Unger and Isabel Valverde in dogs [27]. This eliminated the pancreas
as the origin of this glucagon-like immunoreactivity. Unger then
demonstrated in 1968 that intraduodenal, but not intravenous, glucose
administration increases circulating glucagon-like immunoreactivity
[27], implying that the intestine secretes this glucagon-like material.
The intestinal glucagon-like material was heterogeneous, comprising
several fractions of different molecular size and with apparently
distinct biological actions relative to pancreatic-derived glucagon
[27,28]. The intestinal glucagon-immunoreactive material did not
induce hyperglycemia when injected into dogs and was devoid of
glycogenolytic effects in the isolated perfused rat liver [27].
However, analogous to the effects of glucagon, the intestinal material
stimulated the release of insulin, suggesting that the intestinal
glucagon-like fractions are either different substances or different
forms of pancreatic glucagon [27]. Further corroborating the distinct
nature of the intestinal and pancreatic glucagon-like material, immu-
nocytochemical studies revealed that the intestinal cells that stained
positive for the glucagon antibody differed from the pancreatic
glucagon-producing a-cells in terms of their morphology and ultra-
structure [29], classifying these intestinal cells as “L-cells” [30].
Glucagon-like immunoreactive material of larger size than of glucagon

was subsequently detected in the pancreas of dogs [31] as well as in
islets isolated from birds [32] and guinea pigs [33]. Collectively, these
studies suggested that glucagon might originate from a larger pre-
cursor molecule that is post-translationally cleaved into several frac-
tions of distinct size and with different functions. Immunoprecipitation
analysis of rat pancreatic islets identified this precursor as an 18,000
molecular weight (MW) protein, now classified as proglucagon [34]. In
the pancreas, proglucagon was found to be cleaved to produce two
fragments, mature glucagon and a 10,000-MW second protein. This
latter protein lacked the glucagon sequence and was named major
proglucagon fragment (MPGF) [34,35] (Figure 1).
In the early 1980s, it was established that the major form of the in-
testinal glucagon-immunoreactive material, a peptide designated gli-
centin, contained the full glucagon sequence [36e40], and glicentin
was proposed to represent at least a fragment of proglucagon,
because it was also identified in the pancreas [41]. Although glicentin
was initially thought to comprise w100 amino acids, its purification
from porcine intestine established glicentin as a 69-amino acid peptide
[39]. Thus, intestinal proglucagon is cleaved into distinct fractions that
are different from those derived in the pancreas. In 1982, a smaller
intestinal form was identified as a 37-amino acid peptide containing
the full 29-amino acid sequence of glucagon with 8 additional amino
acids on its C-terminal end [36], the same as found in the C-terminus
of glicentin. Based on its potency to act on oxyntic glands, the 37-
amino acid peptide was named oxyntomodulin [42] (Figure 1). Thus,
it appeared that proglucagon undergoes a tissue-specific, differential
processing leading to the formation of glicentin and oxyntomodulin in
the gut and to glucagon plus the N-terminal fragment of glicentin in the
pancreas [34,43] (Figure 1). By using a method that allows the pre-
diction of a protein sequence through decoding of recombinant cDNA
clones, at the beginning of the 1980s Joel Habener established that a
different glucagon-related peptide is encoded within the anglerfish
preproglucagon cDNA [44e46]. Two glucagon-related peptides were
subsequently identified in the rat [47,48], hamster [49], bovine [50],
and human [51] proglucagon sequence. The two hypothetical peptides
were designated glucagon-like peptides 1 and 2 (GLP-1 and GLP-2)
[49] (Figure 1). Radioimmunoassays in tissues from rats [52], pigs
[53], and humans [54] then established a distinct profile of
proglucagon-derived peptides (PGDPs) in the pancreas and the in-
testine with production of glucagon and one large fragment (major
proglucagon fragment; MPGF) in the pancreas and liberation of smaller
GLP-1 immunoreactive peptides in the intestine.

2. IDENTIFICATION OF GIP AND GLP-1 AS GASTROINTESTINAL
INSULINOTROPIC HORMONES

In 1902, Ernest Bayliss and William Starling identified a substance that
is produced in and secreted from the epithelial cells of the duodenum
in response to the contact of these cells with acidic chyme [55]. Bayliss
and Starling noted that the substance, after being released into the
circulation, stimulates the pancreas to secrete pancreatic juice; they
named the substance secretin, thereby identifying the first gastroin-
testinal hormone [55]. In 1906, Benjamin Moore reported that the
glucosuria of diabetic patients could be ameliorated by repeated oral
administration of a pig-derived intestinal mucosal homogenate [55].
Influenced by the work of Bayliss and Starling, Moore hypothesized
that the intestinal mucosa membrane produces a substance of the
nature of a hormone that decreases blood glucose via its stimulatory
action on the pancreas [55]. Supporting Moore’s hypothesis, in 1929,
Edgard Zunz and Jean LaBarre isolated a fraction from gut extracts that
decreased blood glucose in experimental animals [56]. Assuming that
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the hypoglycemic effect of this fraction resides in its ability to stimulate
the endocrine pancreas to secrete insulin, the factor was named
incretin [56,57].
In the following years, research directed towards identification of
insulinotropic intestinal factor(s) was hampered by difficulties in
quantifying insulin from tissue and blood samples. Once the first in-
sulin radioimmunoassays (RIA) became available in the 1960’s
[58,59], the insulinotropic action of intestinal mucosa extracts was
confirmed in healthy humans and was demonstrated to be absent in
individuals with type-1 diabetes [60]. Several nearly simultaneous
reports then demonstrated that glucose-stimulation of insulin secretion
was much greater when glucose was given orally as compared to
parenterally [61,62]. Greater insulinotropic action of oral glucose
relative to its peripheral administration was demonstrated for both
normal weight and obese individuals [63] and henceforth became
known as the incretin effect [64,65]. In 1965, Ellis Samols and col-
leagues had already hypothesized that the intestinal glucagon-like
material might somehow be related to the incretin effect [66].
Between 1969 and 1971, work by John Brown and Raymond Peder-
son, together with the peptide chemistry expertise of Erik Jorpes and
Viktor Mutt [67], led to the identification of the gastric inhibitory
polypeptide (GIP), a 42-amino acid polypeptide that was named based
on its potency to suppress gastric motility and gastric acid secretion
[68e70]. In 1973, John Dupré demonstrated in healthy human vol-
unteers that GIP, when given intravenously at near-physiological doses
together with glucose, potentiates immunoreactive insulin and im-
proves glucose tolerance, thus identifying GIP as a contributor to the
incretin effect [71]. The insulinotropic action of GIP was subsequently
demonstrated to be due to direct action on the pancreas, where it
enhances glucose-stimulation of insulin secretion, as demonstrated in

isolated rat islets [72e75], and in the perfused pancreas of dogs [76]
and humans [77].
Work from Werner Creutzfeldt’s laboratory in 1983 demonstrated that
removal of GIP from gut extracts by immunoprecipitation diminishes
the incretin effect by less than 50% [78]. Studies in humans with
resection of different parts of the small intestine demonstrated that the
incretin effect and the GIP response to oral glucose did not correlate e
the incretin effect was better correlated with preservation of the ileum
[79]. Because glucagon was known to stimulate insulin secretion [13],
it was natural to look at the newly identified glucagon-like peptides that
possessed w50% sequence homology to glucagon. Indeed, the
glucagon-like peptide that was identified in the anglerfish, as well as
the mammalian proglucagon cDNA and both resembled the GIP
sequence, suggesting that these proglucagon products might have
insulinotropic effects [44e46]. Neither GLP-1 (1-36amide) nor GLP-2,
peptide fragments corresponding to the predicted structures from the
gene sequence, were active on insulin secretion, but a truncated
version of GLP-1 extractable from human and porcine gut was sub-
sequently found to enhance insulin secretion in various experimental
models [80e82] and, ultimately, in human studies, i.e. GLP-1 was
identified as a potential incretin hormone [83].

3. TRANSCRIPTIONAL REGULATION OF PREPROGLUCAGON
(GCG)

Preproglucagon (Gcg) is expressed in pancreatic a-cells, in enter-
oendocrine L-cells throughout the gut, predominantly in the distal
ileum and colon, and in a population of neurons in the nucleus tractus
solitarii (NTS) of the brainstem [52,84e89]. Diphtheria toxin-induced
ablation of preproglucagon-positive neurons in the NTS

Figure 1: Schematic on the tissue-selective processing of proglucagon. PCSK1: prohormone convertase 1/3; PCSK2: prohormone convertase 1/3; NTS: nucleus tractus
solitarii; GRPP: glicentin-related polypeptide; IP-1 intervening peptide-1; IP-2: intervening peptide-2, MPGF: major proglucagon fragment; GLP-1: glucagon-like peptide-1; GLP-2:
glucagon-like peptide-2. See text for further explanations.
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demonstrated that this small population of neurons is the primary
source of endogenous GLP-1 in the brain [90].
Cleavage sites within the proglucagon molecule together with
expression of specific prohormone convertase enzymes determines
which smaller peptide molecules/hormones are formed, including
glicentin (aa 1e69), glicentin-related pancreatic polypeptide (GRPP; aa
1e30), glucagon (aa 33e61), oxyntomodulin (OXM; aa 33e69), the
major proglucagon fragment (MPGF; aa 72e158), and the glucagon-
like peptides 1 (GLP-1; aa 72e107/108) and 2 (GLP-2; aa 126e
158) (Figure 1) [51e53,91]. Several of the PGDPs have important and
well-defined (pharmacological) effects on systemic metabolism,
including the modulation of food intake and satiety (GLP-1, glucagon,
oxyntomodulin), regulation of fluid homeostasis (water intake and urine
excretion) (GLP-1) [92], thermogenesis (glucagon), lipid metabolism
(GLP-1, glucagon, GLP-2), gastrointestinal motility (glucagon, GLP-1,
GLP-2), and gastric emptying (glucagon, GLP-1, GLP-2). Glucagon
released from pancreatic a-cells and GLP-1 released from intestinal L-
cells have opposing effects on blood glucose. Therefore, the expres-
sion and cleavage of proglucagon and secretion of the various PGDPs
must be precisely controlled in a cell-specific process.
The expression of Gcg in the pancreas, intestine, and brain is under the
control of a single promoter and is initiated from an identical tran-
scription start codon (Figure 2). The rodent Gcg promoter, along with
its adjacent DNA control/enhancer elements, is located within the

2.5 kb 50-flanking region of the Gcg transcription start [89,93,94]. In
rodents, the w1.3 kb 50-flanking sequence is sufficient to direct
transgene expression to Gcgþ cells in the brain and the pancreas [95]
but extension of this region to include w2.5 kb is required to target
Gcg þ cells in the intestine [96], including evolutionarily preserved
sequences in the first intron [97].
The cell-specific expression of Gcg is orchestrated by a series of
homeodomain proteins that bind to specific cis-acting elements in the
Gcg promoter and/or enhancer region to either stimulate or inhibit Gcg
promoter activity [94,98e100]. The rat Gcg promoter comprises at
least 5 cis-acting elements (G1 e G5) plus a cAMP response element
(CRE), all of which are located within the 2.5 kb region upstream of the
Gcg transcription start [89,94,101e103]. In a-cells, the TATA box, as
well as the adjacent G1 and G4 elements, represent the minimal
promoter which is essential for Gcg expression while the elements G5,
G2, G3, and CRE represent a more distal located enhancer region
[94,101e103] (Figure 2).
Signaling events leading to the stimulation of Gcg expression in a-cells
include heterodimerization of the transcription factor paired box protein
6 (Pax6) with cellular muscular aponeurotic fibrosarcoma (c-Maf), MAF
bZIP transcription factor B (MafB) or caudal type homeobox 2/3 (Cdx2/
3), and consequent binding of these heterodimers to the G1 element
(Figure 2) [98,104e106]. Pax6 can also bind to the G3 element [100],
and it plays a key role in regulating Gcg expression and a-cell

Figure 2: Schematic on the tissue-selective processing of proglucagon in the pancreatic islets. Schematic on the transcriptional regulation of preproglucagon (PPG) in the
pancreatic islets. Pax6: paired box 6; CDX2/3: caudal type homeobox 2/3; MafB: MAF bZIP transcription factor B; cMaf: c-Maf inducing protein; NKX2.1: NK2 homeobox 1; PDX1:
pancreatic and duodenal homeobox 1; Pax4: paired box 4; CRE: cAMP response element; CREB: cAMP response element binding protein; PPG: preproglucagon; HNF3: hepatocyte
nuclear factor 3; Isl1: ISL LIM homeobox 1; Preb: prolactin element binding. For further explanations, please see text.
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development, because mice lacking Pax6 fail to produce glucagon-
producing a-cells [107]. Pax6 also stimulates Gcg expression in the
enteroendocrine cells of the gastrointestinal epithelium [108]. Mice
homozygous for a dominant negative Pax6 mutation (SEYNeu) have
repressed Gcg expression in enteroendocrine cells in the small and
large bowel and absence of immunoreactive GLP-1 and GLP-2 [109].
Further supporting the role of Pax6 in regulating intestinal Gcg
expression, adenoviral overexpression of Pax6 enhances Gcg promoter
activity and Gcg expression in intestinal enteroendocrine cells such as
the secretin tumor cell line-1 (STC-1) and cells derived from colonic
tumors of transgenic mice expressing large T antigen under the control
of the proglucagon promoter (GLUTag cells) [108].
Other transcriptional mechanisms regulating Gcg expression in a-cells
include interaction of Cdx2/3, POU domain transcription factor brain 4
(Brn-4), hepatocyte nuclear factor 3 alpha (HNF3a; a.k.a. Foxa1),
hepatocyte nuclear factor 3 beta (HNF3b; a.k.a. Foxa2), paired box
protein 2 (Pax2), neuronal differentiation factor 1/beta 2 (NeuroD/
Beta2), and basic helix-loop-helix transcription factor E47 with the G1,
G2, G3, or G4 elements (Figure 2) [100,102,104,106,110e118].
Emphasizing their role in regulating glycemia, mice lacking Foxa1 or
Foxa2 die shortly after birth due to severe hypoglycemia and sub-
stantial reduction in Gcg mRNA levels in the pancreas [119,120].
Notably, a-cell development is impaired in mice lacking Foxa2 but is
normal in mice lacking Foxa1 [119,120]. These data suggest that
Foxa1 affects glucagon levels via its action on the Gcg promoter, while
Foxa2, in addition to modulating Gcg promoter activity, affects a-cell
differentiation. Interestingly, b-cell specific deletion of Foxa2 also re-
sults in postnatal death due to severe hypoglycemia, but the low
glucose level in Foxa2-negative mice seems to be caused by hyper-
insulinemia rather than by changes in Gcg expression [121]. The LIM
homeobox protein 1 (Isl1) is ubiquitously expressed in mature endo-
crine cells of the pancreas [122], and its ablation in mice results in
failure to develop any pancreatic endocrine cell type [123]. In Chinese
Hamster insulinoma InR1-G9 cells, Isl1 enhances the activity of the
Gcg promoter [118]. Isl1 also interacts with the enhancer region of the
genes encoding for insulin [124] and somatostatin [125], stimulating
their transcription. In islet and intestinal endocrine cell lines, Cdx2/3
(the same protein is characterized as Cdx2 in mice and Cdx3 in
hamsters) activates Gcg gene transcription via binding to the G1
element of the Gcg promoter [98]. Overexpression of Cdx2 in a-cell
InR1-G9 cells accordingly increases Gcg expression [113].
In both a-cells and intestinal L-cells, Gcg expression is controlled by
certain homeodomain proteins [94,98,100] and by cAMP-activation of
protein kinase A (PKA), as demonstrated in primary rat intestinal cul-
tures [126], isolated pancreatic cell lines [127,128] and enter-
oendocrine GLUTag and STC-1 cell lines [129,130]. In STC-1 cells,
disruption of the CRE element in the Gcg enhancer only partially blunts
PKA-stimulation of Gcg expression [130,131]. This suggests that PKA
also affects Gcg transcription via CRE-independent mechanisms.
Consistent with this, certain effectors of the Wnt pathway, including
lithium and b-catenin, enhance Gcg expression in intestinal but not
pancreas-derived cell lines, supposedly via inhibition of the glycogen
synthase kinase-3beta (GSK-3beta) [132,133]. PKA has been
demonstrated to inhibit GSK-3beta [134,135], indicating that the CRE-
independent PKA stimulation of the Gcg promoter might be mediated
via negative regulation of the Wnt pathway [132,133]. Other factors
stimulating Gcg expression in the intestine include protein hydrolysates
[101] and insulin [133]. Insulin stimulation of intestinal Gcg promoter
activity and of GLP-1 secretion [133] is noteworthy because insulin
inhibits glucagon production and secretion in isolated rat islets [136]
and in hamster islet InR1-G9 cells [137]. While the mechanism

underlying insulin inhibition of pancreatic glucagon production war-
rants further clarification, it is thought to be achieved by through
transcriptional mechanisms via an insulin-responsive element (IRE) in
the Gcg promoter of the a-cells [138].
Notably, whereas Gcg is robustly expressed in a-cells, its expression is
suppressed in b-cells through binding of pancreatic and duodenal
homeobox 1 (Pdx1), Pax4, and homeobox protein Nkx6.1 to the G1
element, thereby competitively preventing the binding of Pax6/Maf
heterodimers to the G1 element (Figure 2) [100,139,140]. While
substantial evidence supports a role of Pdx1 in the negative regulation
of Gcg expression, Pdx1 immunoreactivity has also been demonstrated
in some Gcg expressing L-cells [141]. Overexpression of Pdx1 alone is
insufficient to block Gcg expression in a-cell cultures (aTC-1 cells),
isolated murine islets, or GLUTag enteroendocrine cells [142]. These
data collectively suggest that Pdx1 requires interaction with other
transcription factors to inhibit Gcg expression.
In summary, the cell-type selective expression of Gcg is regulated
through more than a dozen transcription factors that selectively bind to
cis-acting elements in the Gcg promoter and enhancer regions,
thereby either stimulating or inhibiting Gcg expression. Apart from a
series of homeodomain proteins, Gcg expression is also stimulated by
PKA in response to increased levels of cAMP [94,99,101,129]. Insulin
stimulates intestinal Gcg expression [133] while at the same time
inhibiting Gcg expression in a-cells [89,137,138]. Certain effectors of
the Wnt pathway further enhance Gcg expression in the intestine but
not in the pancreas [94,132,143].

4. POSTTRANSLATIONAL PROCESSING OF PREPROGLUCAGON

The vast majority of glucagon is produced in the pancreatic a-cells,
but, under some conditions, small amounts of glucagon also have been
detected in the intestinal L-cells [87], although the validity of immu-
noassays to distinguish different proglucagon products has been
questioned, and some reports were unable to find genuine glucagon in
the intestine by mass spectrometric analysis [144e146]. Glucagon
also has been detected immunohistochemically in certain Gcg-positive
neurons of the NTS [84e86]. The tissue-specific cleavage of proglu-
cagon is orchestrated by the selective expression of the prohormone
convertase (PC) enzymes. Prohormone convertase 1 (PC1; a.k.a.
PCSK1 or PC1/3) is expressed in GCG þ cells in the brain and the
intestine, and cleavage of Gcg by PCSK1 results in the liberation of
GLP-1, GLP-2, glicentin, oxyntomodulin, and IP2 (Figure 1) [147e150].
In contrast, PC2 (a.k.a. PCSK2) is highly expressed in the pancreas
[151], and its expression in a-cells results in cleavage of Gcg into
“pancreatic type” glucagon, GRPP, MPGF, and a small intervening
peptide (IP1). Studies in the porcine and human pancreas suggest that
the PCSK2-liberated PGDPs are all co-secreted in equimolar concen-
trations from the islets [152,153]. Underlining the role of PCSK2 in
liberation of glucagon via proglucagon processing, PCSK2-deficient
mice are slightly hypoglycemic upon fasting, have a reduced rise in
blood glucose following intraperitoneal glucose administration, display
impaired processing of Gcg in the a-cells, and develop a-cell hyper-
plasia [154,155]. The hypoglycemia and a-cell hyperplasia seem to
directly result from glucagon deficiency because continuous intra-
peritoneal glucagon supplementation is sufficient to correct the hy-
poglycemia and the a-cell hyperplasia of Pcsk2�/� mice [156].
While PCSK2 is the predominant prohormone convertase in a-cells in
non-pathological conditions, a-cell PCSK1 immunoreactivity increases
in rodent models of metabolic stress. a-cell PCSK1 activity and/or
expression is found in embryonic and neonatal mice, with pregnancy,
and in models of prediabetes and diabetes [157e160]. In cultured a-
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cell lines or isolated islets, high-media glucose concentrations in-
crease PCSK1 expression and cellular GLP-1 content [161,162]. Islet
GLP-1 production is also mediated by the cytokine IL-6, which is
released in response to exercise, obesity and diabetes [163,164].
Lastly, upon streptozotocin-induced destruction of the b-cells, there is
an acute increase in islet PCSK1 and Gcg expression and increased
processing of proglucagon to GLP-1 [158]. Consistent with this,
adenoviral overexpression of PCSK1 in a-cells increases islet GLP-1
production and secretion, ultimately leading to enhanced glucose-
stimulation of insulin secretion and improved survival of the islets
[165]. Further, glucagon receptor KO mice also have compensatory
increases in a-cell GLP-1, and GLP-1 receptor (GLP-1R) signaling has
been reported to contribute to the preserved glucose responses after
streptozotocin administration [166,167]. Together, these data point to
a potential role of the a-cells in compensating for increased b-cell
functional demand under conditions of insulin resistance, pregnancy,
and cellular stress through intra-islet GLP-1 production [168,169].
Multiple lines of evidence are accumulating that challenge current
dogma and imply that pancreatic GLP-1 production also has a role,
under some circumstances, in regulating insulin secretion via para-
crine action [170e172]. Further work is needed to understand the
pathological and physiological role for GLP-1 vs. glucagon and para-
crine signaling in islet cell development. Glucagon-stimulation of in-
sulin secretion is preserved in islets isolated from b-cell-specific GCGR
KO mice but is attenuated upon treatment of these islets with exendin
(9e39) [173]. Consistent with this, glucagon-stimulation of insulin
secretion is decreased in islets isolated from b-cell-specific GLP-1R
KO mice [173]. These data underscore the importance of a-to b-cell
communication and indicate that glucagon may be the dominant PGDP
acting via the GLP-1R on the b-cells to stimulate insulin
secretion [173].
Several forms of GLP-1 are processed from proglucagon and vary in
their ability to enhance glucose-induced insulin secretion. The different
forms include GLP-1 (1e37) (or 1-36amide) and two “truncated”
forms, GLP-1 (7-36amide) (“amidated GLP-1) and GLP-1 (7e37)
(“glycine-extended GLP-1”) (Figure 1) [174]. In humans, nearly all
circulating GLP-1 is one of the truncated forms, with w80% of GLP-1
immunoreactivity corresponding to GLP-1 (7-36amide) and w20% to
the glycine-extended GLP-1 (7e37) [175]. The relative abundance of
GLP-1 (7-36amide), GLP-1 (7e37) and GLP-1 (1e37) differs among
species [176e178]. Both the longer and the truncated forms of GLP-1
are detected in extracts of rat intestine and pancreas [52], in a rat Gcg-
producing cell line [179] and upon transfection of rat pituitary or rat
insulinoma cells with a glucagon fusion gene [180]. While GLP-1 (7-
36amide) and GLP-1 (7e37) are equally potent to stimulate the
secretion of insulin and c-peptide [181], GLP-1 (1e37) has a much
lower insulinotropic efficacy [80e82].

5. GLP-1 DEGRADATION

Native GLP-1 has a very short half-life, which, depending on the
species, is around 1e2 min [182e184] and results from two causes:
(a) the action of the enzyme dipeptidylpeptidase-4 (DPP-4) and (b)
renal elimination. DPP-4 cleaves GLP-1 (7-36amide) and GLP-1 (7e
37) at the N-terminal dipeptide to generate GLP-1 (9-36amide) or GLP-
1 (9e37), low affinity ligands for the GLP-1 receptor [185e188]. Both
these intact forms as well as inactivated GLP-1 metabolites are also
rapidly cleared from the circulation via the kidneys. In mice, the
enzyme neprilysin additionally rapidly degrades the metabolites,
making GLP-1 difficult to measure in this species [189]. While GLP-1
degradation is unaffected by kidney function, the clearance of both

GLP-1, and to a greater extent its inactive metabolites, is delayed in
patients with renal insufficiency [184].
DPP-4 exists in two forms; i.e., it is a membrane-spanning cell surface
protein and a circulating protein, and both forms have actions that
extend beyond its proteolytic activity [190]. In the intestine, DPP-4 is
highly expressed in the enterocyte brush border and in endothelial cells
[191]. Consequently, as discussed in a comprehensive review [152], a
large portion of intestinal GLP-1 is already degraded in the capillaries
of the distal gut with an estimatedw25% of active GLP-1 reaching the
liver and only w10e15% reaching the general circulation
[152,176,183,191]. Pharmacological inhibition or genetic reduction of
DPP-4 activity preserves much higher circulating levels of intact GLP-1
[191,192], and this was demonstrated to potentiate the insulinotropic
effect of GLP-1 in anesthetized pigs (eventually leading to the devel-
opment of DPP-4 inhibitors for clinical use) [193]. When administered
i.v., i.p., or s.c. in rats, GLP-1 (7e36 amide) has a half-life of 0.8e
4.7 min, 0.6e13.5 min and 4.6e7.1 min, respectively [194].
Substantial evidence indicates that the DPP-4-generated GLP-1 me-
tabolites (GLP-1 (9-36amide) and GLP-1 (9e37)) have no major role in
regulating glucose metabolism [195e197]. However, one report of an
experiment in obese humans suggested that GLP-1 (9-36amide) is a
weak insulin secretagogue [198], and administration of GLP-1 (9-
36amide) improves glucose handling without affecting insulin secre-
tion in anesthetized pigs and in humans [199,200]. GLP-1 (9-36amide)
also improves cardiac output in the post-ischemic mouse heart when
administered during reperfusion, and it affects vasodilation in
mesenteric arteries in mice [201]. This scenario contrasts with the
apparent lack of effect of high doses of GLP-1 (9-36amide) on glu-
coregulation in ob/ob mice or on cognitive function in high-fat fed mice
[202,203]. Indeed, there is evidence that truncated GLP-1 (9-36amide)
has no effect on glucose clearance or insulin secretion in healthy
humans [196]. In fact, the peptide acts as a weak GLP-1R antagonist,
clearly counteracting the biological effects of GLP-1 (7-36amide)
in vitro [204].

6. REGULATION OF GLP-1 SECRETION

6.1. Intestinal distribution of the L-cells
Although there is some species variation, the density of L-cells is
relatively low in the proximal small bowel and increases distally along
the gut, with greatest density in the ileum and colon [205e209]. In
rats, pigs, and humans, the majority of L-cells are located in the
epithelial layer of the distal bowel [208]. The apical surface of the L-cell
faces the gut lumen, where it has direct contact with luminal nutrients
(Figure 3) [208]. Consistent with this, plasma levels of GLP-1 rapidly
increase in healthy humans upon direct administration of carbohy-
drates or lipids into the ileum [210]. While potentially being sufficient
for the early rise in circulating GLP-1 upon food intake, the relative
scarceness of L-cells in the proximal small intestine of both rodents
and humans [208] suggests that proximal to-distal neuronal and/or
humoral signals might affect the release of GLP-1 during meals [208],
in particular during the early phase of GLP-1 secretion. Nonetheless,
the ability of L-cells to secrete GLP-1 in direct response to luminal
nutrients certainly plays an additional role, and may be the main
mechanism of GLP-1 secretion. Contact of nutrients with L-cells in the
distal gut likely explains the prolonged duration of elevated GLP-1
during meals, and it might also be responsible for the typically
observed increased levels of GLP-1 following gastric bypass and, albeit
less so, after sleeve gastrectomy surgery [211e216], because surgical
repositioning of the distal gut more rapidly exposes the distal L-cells to
incoming nutrients [144]. Similar effects are elicited by a-glucosidase
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inhibitors, which prevent digestion of starch and oligosaccharides, thus
moving the unprocessed nutrients to more distal parts of the gut. In
some studies, depending on subject characteristics and nutrient load,
GLP-1 responses were augmented by acarbose or voglibose (a-
glucosidase inhibitors) [217,218]. The commonly observed increase in
GLP-1 after bariatric surgery [211e216] is considered a causal factor
leading to increased circulating levels of insulin after the surgery. In
line with this notion, blockade of GLP-1R with exendin-9 has been
demonstrated to normalize post-bariatric hyperinsulinemia and alle-
viate resulting hypoglycemia after RYGB [219] or gastrectomy [217].
Similarly, blockade of GLP-1R with an antagonistic monoclonal anti-
body demonstrated an important contribution of enhanced GLP-1
secretion to the improved insulin secretion and glucose handling af-
ter vertical sleeve gastrectomy (VSG) in preoperatively lean mice [144].
The commonly observed rise in GLP-1 following gastric bypass surgery
is also consistent with the robust responses observed in humans upon
direct introduction of nutrients, in amounts corresponding to the
“physiological malabsorption”, by distal ileal intubation [210]. Thus,
increased circulating GLP-1 is invariably reported after bariatric sur-
gery [211e216] and after surgical repositioning of the distal gut (so-
called ileal interposition), both of which rapidly expose the L-cells to
incoming incompletely digested nutrients [144].
Enhanced GLP-1 secretion has been suggested to be a major mech-
anism underlying enhanced insulin secretion after bariatric surgery
because blockade of GLP-1 action by treatment with the pharmaco-
logical antagonist exendin-9 decreased insulin secretion and amelio-
rated post-surgical glucose handling in both mice and humans [144].
Nonetheless, a primary role of GLP-1 in post-surgical improvement of

metabolism is controversial. Studies in GLP-1R KO mice documented
that obese mice exhibit comparable weight loss and improved glucose
metabolism to wildtype controls following VSG [220]. Failure of GLP-1R
KO to attenuate the beneficial effects of bariatric surgery on body
weight may be related to the observation that the body weight
decrease in mice after RYGB may reflect enhanced energy expenditure,
whereas in humans and in rats a reduction in food intake is more
important [221]. However, sleeve gastrectomy differs markedly from
gastric bypass with faster systemic appearance of ingested glucose
and higher secretion of insulin, GLP-1, PYY, CCK, and ghrelin after
RGYB [222]. Perhaps analogously, rodent experiments have found that
GLP-1R signaling is not required for the weight-reducing effect of
Roux-en-Y Gastric Bypass (RYGB) [223]. Furthermore, GLP-1 inhibition
by exendin (9e39) or administration of a DPP-4 inhibitor does not
affect food intake in humans following RYGB [224]. However, as
demonstrated in that same report, concomitant administration of
exendin9-39 and a DPP-4 inhibitor increased food intake by w20%,
suggesting that GLP-1, when potentially acting in concert with other
gut hormones, might have an important role in the metabolic benefits
achieved by bariatric surgery [224]. Consistent with this, treatment of
RYGB patients with exendin (9e39) increases the fMRI response to
images of food in the caudate nucleus, and in the insula in the human
brain in response to consuming palatable food [225].
The improved glucose metabolism is mainly due to three closely
interacting factors: 1) rapid absorption of glucose from the intestine
giving rise to high post-prandial glucose responses, 2) a consequent
exaggerated secretion of GLP-1 that act on the b-cells, and 3) radically
improved hepatic and subsequently peripheral insulin sensitivity [226].

Figure 3: Schematic on the nutrient-induced stimulation of GLP-1 secretion in the L-cell. CICR: calcium-induced calcium release; LCFA: long-chain fatty acids, GLUT2:
glucose transporter 2; GLP-1: glucagon-like peptide-1; GLP-2: glucagon-like peptide-2; OXM: oxyntomodulin; Trpc3: transient receptor potential channel 3; VDCC: voltage-
dependent calcium channel; SGLT1: sodium/glucose co-transporter 1. For further explanations, please see text.
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Like pancreatic a-cells, the intestinal L-cells secrete PGDPs simulta-
neously and in equimolar concentrations. An exception is glicentin and
its cleavage product oxyntomodulin, the concentrations of which need
to be combined to match the amount of secreted GLP-1 [41,53]. Meal-
induced GLP-1 secretion has been demonstrated in numerous species
including mice [227], rats [228e232], dogs [233e235] and humans
[236e239]. An important consideration when analyzing meal-induced
GLP-1 secretion is whether GLP-1 was measured in systemic or portal
vein blood, whether the samples were taken in relation to oral meals or
rather to intragastric infusion of liquid (or semiliquid) meals, and
whether total or active GLP-1 was measured. As comprehensively
discussed previously [240], an estimate of up to 75% of active GLP-1 is
already degraded in the gut, and, from the amount of GLP-1 reaching
the liver, another 50% is degraded before reaching the systemic cir-
culation [183,241]. Only 10e15% of active GLP-1 is believed to reach
the pancreas via the circulation [185,191,241]. As demonstrated in
anesthetized pigs, blood concentrations of total and active GLP-1
progressively decrease with increasing distance from the site of
secretion [241]. Levels of total and active GLP-1 are thus highest in the
portal vein and lowest in the peripheral venous system [241]. In
anesthetized pigs, baseline levels of total GLP-1 in the portal vein are in
the range of w30 pmol/l and increase up to 150 pmol/l upon treat-
ment with neuromedin C, which is a known stimulator of GLP-1
secretion [241]. Baseline portal vein levels of active GLP-1 are
w10 pmol/l and increase up to w40 pmol/l upon treatment with
neuromedin C [241].
Systemic plasma levels of total C-terminally amidated GLP-1 correlate
with plasma insulin and thus are low during fasting and increased in
response to an oral meal [236]. In humans, fasting systemic plasma
concentrations of “total” GLP-1 (including metabolites generated by
DPP-4-mediated degradation) are typically in the range of 5e10 pmol/
L and can increase up to 40 pmol/L in response to a meal [236].
Plasma systemic concentrations of “intact”, biologically active GLP-1
are much lower (fasting: < 2 pmol/l, peak post-nutrient concentra-
tions 5e10 pmol/l) [240,242]. The amount of GLP-1 secretion is
affected by the size and composition of a meal [237]. In healthy human
volunteers, a 520 kcal oral meal induced a greater systemic increase
of plasma systemic total and active GLP-1 than a 260 kcal meal [237].
GLP-1 levels are detectable during fasting, indicating that GLP-1 is
tonically secreted into the general circulation in basal conditions [243].
In rats however, there is also evidence for a “preprandial” cephalic-
phase GLP-1 reflex [244,245], and the muscarinic cholinergic antag-
onist atropine reduces the GLP-1 response to an oral glucose load in
humans [246].
Nutrients stimulating GLP-1 secretion include the metabolizable
monosaccharides that include glucose, fructose, and galactose
[239,247e250] as well as non-metabolizable monosaccharides such
as methyl-a-glucopyranoside [247], long-chain fatty acids [232,251e
253], proteins [228,250,254e257], and certain amino acids [258e
260]. In healthy humans, ingestion of carbohydrates or proteins
elicits a rapid increase in circulating GLP-1 with a peak 30e60 min
following nutrient intake, whereas ingestion of lipids elicits a some-
what later but more prolonged (>120 min) increase [238,239]. In rats,
portal vein levels of total GLP-1 peak around 15 min after intragastric
infusion of a liquid meal and return to baseline levels after 90e
120 min [231]. In rats eating a spontaneous chow meal, increased
portal vein but not systemic levels of active GLP-1 are detectable [261].
There is controversy as to whether glucose-induced GLP-1 secretion is
disturbed in patients with type-2 diabetes. A study in w1,500 Danish
subjects suggested that the GLP-1 response to oral glucose is reduced
in patients with prediabetes or type-2 diabetes [262]. In contrast, a

meta-analysis of 22 clinical studies revealed no difference in glucose-
stimulated GLP-1 secretion between patients with type-2 diabetes and
non-diabetic controls [263,264].

6.2. GLP-1 secretion in response to monosaccharides and other
carbohydrates
The cellular mechanisms underlying glucose-stimulation of GLP-1
secretion from L-cells are, at least in part, similar to the stimulation
of insulin secretion in the islets. In enteroendocrine GLUTag cells,
glucose, and fructose dose-dependently increase GLP-1 secretion
through closure of ATP-sensitive KATP channels and subsequent
membrane depolarization (Figure 3) [247,249,265]. Glucose-induced
membrane depolarization entails opening of voltage-dependent Ca2þ

(VDC) channels, and the resulting Ca2þ influx then triggers vesicular
exocytosis and secretion of GLP-1 into the circulation (Figure 3) [266].
Underlining the role of the KATP channels in mediating this process,
glucose-stimulated Ca2þ entry and GLP-1 secretion are mimicked
upon treatment of GLUTag cells with the KATP channel inhibitor
tolbutamide [265]. While the importance of KATP channel activity in
mediating GLP-1 release has been confirmed in vitro, its relevance for
GLP-1 secretion in vivo is less clear. While sulphonylureas potently
promote insulin secretion in type-2 diabetic patients via inhibition of
KATP channel activity [267e270], there is no clear evidence that sul-
phonylureas affect GLP-1 secretion in humans (as reviewed in [266]).
However, the Kir6.2/SUR1 channel complex of the KATP channel is
present in human L-cells [271] and KATP channel subunits and
glucokinase are highly expressed in murine L-cell populations [266]. In
summary, while L-cell depolarization is crucial for GLP-1 secretion, the
role of the Kir6.2/SUR1 channel complex of the KATP channels for
mediating this process in vivo warrants clarification.
Monosaccharides demonstrated to stimulate GLP-1 secretion include
glucose, galactose, and fructose [239,247]. Low concentrations of
glucose or methyl-a-glucopyranoside stimulate L-cell electrical activity
and promote GLP-1 secretion via sodium-glucose cotransporter
(SGLT1)-dependent induction of small inward currents (Figure 3) [247].
Preventing luminal glucose absorption by blockade of SGLT1 reduces
GLP-1 secretion in the isolated perfused canine ileum [248] and in the
rat ileum [178] and impairs glucose-stimulation of GLP-1 release in
GLUTag cells [247]. Notably, the glucose transporter-2 (GLUT2) has
been implicated in glucose-stimulated GLP-1 secretion, as demon-
strated by an impaired GLP-1 response to oral glucose in mice defi-
cient for GLUT2, and this is accompanied by reduced glucose-
stimulated insulin secretion and impaired glucose tolerance [272].
However, pharmacological inhibition of active, sodium-coupled
glucose transport impaired glucose-stimulated GLP-1 secretion
in vitro, whereas inhibition of facilitative GLUT-mediated glucose
transport was without effect [273]. In summary, glucose uptake into
the L-cells seems to be mediated via both, GLUT2 and SGLT1
(Figure 3) [274e276], with the electrogenic SGLT1 mediated uptake
being of particular importance for stimulus secretion coupling.
Downstream of glucose-mediated membrane depolarization, vesicular
exocytosis of GLP-1 is orchestrated in a Ca2þ dependent manner
involving a cellular machinery like that in b-cells [277,278]. Fructose
stimulation of GLP-1 secretion has been demonstrated in rats, mice,
humans, and GLUTag cells [249,279]. When given orally, fructose is a
far less potent GLP-1 secretagogue relative to an isocaloric load of
glucose [249]. Similar findings are reported in humans upon intra-
gastric infusion of glucose and fructose at doses that are matched for
sweetness [279].
A possible role of intestinal sweet-taste receptors in glucose-
stimulated GLP-1 secretion remains uncertain. In isolated murine
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and human L-cell cultures, glucose, and the artificial sweetener
sucralose, each stimulates GLP-1 secretion with diminished glucose
stimulation of GLP-1 secretion in mice lacking a-gustducin, an integral
sweet-taste receptor element [280]. In contrast, there is no effect of
sucralose on GLP-1 secretion in primary L-cell cultures in other reports
[281,282], and infusion of artificial sweeteners does not affect
glucose-stimulated GLP-1 secretion in healthy human volunteers
[283,284].

6.3. GLP-1 secretion in response to dietary lipids
In addition to sensing carbohydrates and glucose, L-cells, like other
enteroendocrine cells, sense dietary lipids and protein (see next sec-
tion) through specific cell-surface receptors, which bind metabolites of
the dietary lipids and proteins [285] (Figure 4). This occurs mainly at
the basolateral side of the L-cell, i.e. after absorption of the metabolites
[285]. In the case of dietary triglycerides, the L-cell responds not only
to the free fatty acids but also to the other major metabolite product, 2-
monoacyl glycerol (2-MAG), which appears to act in synergy [286].
Cell lines commonly used to study mechanisms of GLP-1 secretion are
GLUTag, STC-1 and human colorectal adenocarcinoma-derived NCI-
H716 cells. These cell lines are far from optimal models, as they, for
example, differ in their secretory repertoire; some secreting peptides
that are not classical L-cell products, such as GIP, glucagon, and
somatostatin, and GLUTag cells lack PYY [287].
Fatty acid induction of GLP-1 secretion has been demonstrated in vitro
using murine enteroendocrine STC-1 cells [251] and human intestinal
NCI-H716 cells [251,253] and in vivo by direct administration of lipids
into the duodenum [288,289] or ileum [210]. Dose-dependent fatty
acid-induced GLP-1 secretion is evident with a-linolenic acid (C18:3),
docosahexanoic acid (C22:6), and palmitoleic acid (C16:1), oleic acid
(C18:1), stearic acid (C18:0), and octanoic acid (C8:0) [251] are less

effective. In humans, unsaturated are more effective than saturated
fatty acids [290,291].
Induction of GLP-1 secretion by FFA is highly dependent on the
cytosolic Ca2þ concentration. Treatment of STC-1, GLUTag, or NCI-
H716 cells with long-chain fatty acids potently increases intracellular
Ca2þ [253,292]. The FFA-induced rise in intracellular Ca2þ is sub-
stantially reduced when cells are cultured in a Ca2þ free medium, and
is abolished upon treatment of cells with the Ca2þ channel inhibitor
nicardipine [292] or when using BSA (which binds fatty acids) [251].
Collectively, these data suggest that FFAs increase intracellular Ca2þ

by stimulating the influx of Ca2þ via the cell-surface (most likely L-
type) Ca2þ channels [292]. Treatment of NCI-H716 or STC-1 cells with
the Ca2þ ionophore ionomycin or with phorbol myristate acetate (PMA)
increases cytosolic Ca2þ levels and stimulates GLP-1 secretion in a
dose-dependent manner [251,253]. The ionomycin-induced increase
in Ca2þ influx and GLP-1 secretion is completely abolished upon
treatment of cells with the Ca2þ chelator EGTA [251]. In summary,
compelling evidence indicates that FFA increase GLP-1 secretion by
stimulating extracellular Ca2þ influx via cell-surface Ca2þ channels.
Receptors implicated in FFA regulation of GLP-1 secretion include
GPR120 (FFAR4) and GPR40 (FFAR1), both of which are activated by
long-chain fatty acids. GPR120 was previously reported to be co-
localized with GLP-1 in colonic enteroendocrine cells [251]. This
could point to GPR120 being involved in the stimulation of GLP-1 by
long chain FFAs. However, The GLP-1 response to oleic acid is unal-
tered in GPR120-deficient mice, and synthetic GPR120 agonists do not
stimulate GLP-1 from primary cell cultures [286]. GPR40, the other
long chain FFA receptor, is also highly expressed and the most
enriched GPCR in L-cells [266,293]. In contrast to GPR120, the GLP-1
response to dietary fat is strongly reduced in GPR40 KO mice as
compared to littermates [286]. Importantly, synthetic GPR40 agonists

Figure 4: Schematic on the GPCR Repertoire Involved in Control of Hormone Secretion from Gastric cells expressing either ghrelin or GLP-1. Green or red color
background color indicates stimulation (green) or inhibition (red) of hormone secretion upon receptor activation. The colors of the receptors represent G protein signaling potential
via G/s (green), G/q (orange) or G/i/o (red). The type of G protein responsible for the effect on hormone secretion has not been determined for all the receptors; for those where it
has not been described, we have indicated the most likely coupling, based on data from other cell studies. 2-MAG, 2- monoacyl glycerol; BB2, bombesin receptor 2; Calcrl,
calcitonin receptor-like receptor; CaSR, calcium sensing receptor; CGRP, calcitonin gene-related peptide; FACS, fluorescence-activated cell sorting; FFAR, free fatty acid receptor;
GalR1, galanin receptor 1; GIP, glucose-dependent insulinotropic peptide; GIPR, GIP receptor; GPR, G protein receptor; MC$, melanocortin 4; MSH, melanocyte-stimulating
hormone; NMC, neuromedin C; PYY, peptide YY; Ramp1, receptor activity modifying protein 1; SCTR, secretin receptor T; SSTR, somatostatin receptor; TGR5, bile acid receptor.
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are efficacious GLP-1 secretagogues both in vitro in primary cultures,
in perfused intestines and in vivo when studied in mice [252,294,295].
Treatment of mice with GPR40 agonists [296,297] has been reported
to decrease body weight and food intake in DIO mice, effects notably
absent in mice deficient for either GPR40 or GLP-1R [296].
Accordingly, long chain fatty acids stimulate GLP-1 secretion mainly
through GPR40. However, the other main metabolite from dietary tri-
glycerides, 2-MAG, is also a very powerful GLP-1 secretagogue acting
through GPR119 [298,299]. Importantly, the GLP-1 response to dietary
fat is vastly reduced not only in GPR40 KO animals but also in GPR119
KO mice, and agonists for the Gq-coupled GPR40 act in synergy with
the Gs-coupled GPR119 to robustly stimulate GLP-1 [286,300]. A
receptor-independent stimulation of GLP-1 release from GLUTag cells
has been reported for oleic acid, which stimulates GLP-1 release by
uncoupling oxidative phosphorylation and, hence, indirectly stimulating
glycolysis with the resulting activation of the mechanism alluded to
above [301].

6.4. GLP-1 secretion by proteins/amino acids
Protein and amino acid stimulation of GLP-1 secretion has been
demonstrated in murine primary colonic L-cell cultures [260,302], in
GLUTag cells [256,259], in human NCI-H716 cells [251,303] and in the
isolated perfused rat ileum or colon [250,304] as well as in vivo in mice
[305], rats [256,306], and humans [307,308]. In healthy human vol-
unteers, a diet with 30% kcal from protein (40% carbohydrates, 30%
fat) causes greater GLP-1 secretion than a diet with 10% kcal protein
(60% carbohydrates, 30% fat) [308]. Individual amino acids stimu-
lating GLP-1 secretion include glutamine, asparagine, phenylalanine,
and glycine, with glutamine and glycine being the most potent [258e
260]. When orally administered, glutamine also increases circulating
GLP-1 and insulin in lean, obese and type-2 diabetic individuals [307].
In human NCI-H716 cells, stimulation of GLP-1 secretion was also
demonstrated for leucine, isoleucine, valine, skimmed milk, casein,
and whey [303]. L-Arginine, a potent insulin secretagogue [309], also
stimulates GLP-1 release from isolated rat intestine, and, when given
orally, augments GLP-1 and insulin levels and improves glucose
tolerance in mice, effects that are absent in GLP-1R KO mice [305].
Meat hydrolysate stimulates GLP-1 secretion from NCI-H716 cells, an
effect that is not related to changes in proglucagon expression [253].
This stimulatory effect can be blocked by pretreatment with the p38
inhibitor SB203580, the PI3 kinase inhibitor wortmannin or the MEK1/2
inhibitor U0126 [310]. The corn protein zein stimulates GLP-1 secre-
tion in GLUTag cells and in the small intestine of anesthetized rats
[256], and it stimulates GLP-1 secretion when administered either
orally [228] or directly into the ileum [257]. Intraluminal administration
of peptones stimulate GLP-1 secretion in the isolated perfused rat
ileum [250] but not upon ileal perfusion in healthy human volunteers
[210]. Pectin stimulates GLP-1 secretion in the isolated perfused rat
colon [304] but not in the isolated rat ileum [250]. The low molecular
fraction of wheat protein hydrolysate (LWP) increases GLP-1 secretion
in both GLUTag cells and when directly administered in rats [306]. In
rats, the LWP-induced GLP-1 secretion further improves glucose
tolerance and enhances insulin secretion, an effect that is blocked by
pre-administration of the GLP-1R antagonist exendin (9e39) [306].
Protein-stimulation of GLP-1 secretion has also been demonstrated in
humans, with similar GLP-1 responses upon uptake of whey, casein,
gluten or cod protein [311e313]. Protein-induction of GLP-1 secretion
seems to be dose-dependent, as demonstrated by uptake of isocaloric
diets comprising 14%, 25%, or 50% of energy coming from
proteins [314].

The molecular mechanisms underlying protein stimulation of GLP-1
secretion include activation of Ca2þ/calmodulin-dependent kinase II
[306]. Substantial evidence supports that peptide-mediated GLP-1
secretion is a Ca2þ sensitive process and involves L-cell signaling via
the Ca2þ sensing receptor (CaSR) and the peptide transporter 1
(PEPT1) [302]. Consistent with this, glycine-sarcosine (Gly-Sar) stim-
ulation of GLP-1 secretion from purified murine L-cell cultures is
blocked in the absence of extracellular Ca2þ and is inhibited upon
treatment with the L-type Ca2þ-channel blocker nifedipine [302].
Oligopeptide stimulation of GLP-1 release is impaired upon treatment
of L-cell cultures with a CaSR antagonist and is ameliorated in mice
deficient for the peptide transporter 1 (PEPT1) [302]. Aromatic amino
acids such as phenylalanine, however, also interact with
GPR142 [315].

6.5. GLP-1 secretion in response to endocrine factors

6.5.1. Endocrine regulation of intestinal GLP-1 secretion
The intestinal distribution of L-cells, with high abundance in the distal
gut and low abundance in the proximal gut, argues for the existence of
a proximal-to-distal coordinating loop in which neuronal and/or
endocrine factors arising in the upper intestine affect L-cell GLP-1
secretion in the distal region. While such a proximal-distal loop
might indeed exist, it cannot be ruled out that while fewer in number,
L-cells in the upper intestine are sufficient for the rapid induction of
GLP-1 secretion following nutrient intake [316e318]. Nonetheless, the
presumed loop (if it exists) would likely be important for the early
postprandial phase at a time when the L-cells of the distal gut are not
yet in direct contact with luminal nutrients. Supporting such neuronal/
endocrine regulation of GLP-1 secretion, the L-cells are in close
proximity to both enteric neurons and the intestinal microvasculature
[191,319]. Possible neuroendocrine regulation of GLP-1 secretion is
supported by studies in rodents in which nutrient flow to the distal
intestine is prevented, precluding direct L-cell contact in this part of the
intestine to luminal nutrients, [289,320]. Administration of glucose or
fat directly into the duodenum of such rodents rapidly stimulates L-cell
GLP-1 secretion, with a magnitude comparable to that occurring when
nutrients are directly placed into the ileum [289,320]. Because the L-
cells co-secrete the PGDPs, factors stimulating GLP-2 or oxy-
ntomodulin are also natural secretagogues of GLP-1. Neuronal/endo-
crine factors affecting the intestinal release of PGDPs in some species
include GIP, acetylcholine, gastrin-releasing peptide (GRP), insulin,
somatostatin, and ghrelin [320e322].
In rodents, a biphasic secretion of GLP-1 has been observed; this
suggests a rapid phase of GLP-1 secretion caused by direct stimulation
of L-cells in the upper GI tract and a second phase potentially caused
by signals from the upper gut reaching the lower small and perhaps
even the large intestine [323,324]. GIP and the intramural intestinal
autonomous nervous system have been suggested as signaling
pathways [323]. Several lines of evidence support a role for GIP in GLP-
1 secretion. GIP stimulation of GLP-1 secretion, however, seems to be
highly species-specific. Levels of GIP expression (in K-cells) are
greatest in the proximal gut, and circulating levels of GIP rapidly in-
crease upon food intake [236,325,326] or when nutrients are placed
directly into the duodenum [289,323,327]. Secretion of
preproglucagon-derived peptides is stimulated in rats and in primary
rat L-cell cultures upon treatment with GIP [289,323,327]. In rats,
induction of gut glucagon-like immunoreactivity induced by either
lipids or by physiological concentrations of GIP can be blocked by
subdiaphragmatic vagotomy, suggesting that in rats GIP regulation of
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GLP-1 secretion requires either afferent or efferent signal transmission
via the vagus [327]. The importance of such a proximal-to-distal GIP-
GLP-1 axis for human physiology is, however, questionable. In healthy
and type-2 diabetic humans, it has been consistently demonstrated,
that GIP, even in rather high (supraphysiological) doses, does not lead
to GLP-1 secretion [328e330]. In humans, GLP-1 secretion in
response to duodenal glucose delivery does not become robustly
stimulated until the delivery rate overcomes the absorptive capacity of
the duodenum, i.e. until such time as non-absorbed glucose reaches
the jejunum and beyond. In contrast, GIP secretion is stimulated by
very low gastric glucose delivery rates, consistent with the higher
abundance of GIP-producing K-cells compared to GLP-1-producing L-
cells in the proximal intestine [331]. Direct infusion of glucose into the
duodenum at a rate that ensured w total absorption close to the
infusion site (2 kcal/min) triggered robust GIP, but not GLP-1 secretion,
whereas both hormones were released when glucose was directly
delivered into the ileum [332]. Another gut peptide that has been
implicated in a proximal-to-distal loop to stimulate GLP-1 secretion is
CCK [333]. However, the concentrations of both GIP and CCK needed to
stimulate GLP-1 secretion are not normally reached under physiolog-
ical conditions [334].
Neurotransmitters expressed in vagal and enteric neurons, including
acetylcholine and GRP, increase GLP-1 secretion, supporting the
possibility of a proximal-distal neuroendocrine loop [335] without the
need of supraphysiological plasma concentrations of proximally-
secreted gut peptides. Receptors for acetylcholine, including the
muscarinic receptors M1, M2, and M3, are expressed in rat L-cells
[319] and human NCI-H716 cells [336]. Treatment of rats with the
nonspecific muscarinic receptor antagonist atropine or with the M1
selective antagonist pirenzipine, but not treatment with M2 or M3-
selective antagonists blunts lipid-induced GLP-1 secretion [319,335].
In human NCI-H716 cells, GLP-1 secretion is stimulated by betha-
nechol, a nonselective muscarinic agonist, while pretreatment with
pirenzipine or the M2 antagonist gallamine inhibits bethanechol-
induction of GLP-1 secretion [336]. Acetylcholine also stimulates
GLP-1 secretion in the perfused porcine ileum, and this effect can be
blocked by co-infusion of atropine [337]. Albeit with notable physio-
logical challenges (atropine powerfully inhibits GI motility), infusion of
atropine also blunts nutrient induced GLP-1 secretion in healthy human
volunteers [246]. Together, these data suggest that M1 and M2
muscarinic receptors are implicated in human L-cell GLP-1 secretion.
Interestingly, in rat ileum preparations, administration of atropine was
not able to block GIP-induced GLP-1 secretion [335]. In the isolated
perfused porcine ileum, GLP-1 secretion is inhibited by electrical nerve
stimulation or by administration of norepinephrine, effects that can be
blocked by co-infusion of the nonselective a-adrenergic receptor
antagonist phentolamine [337]. While norepinephrine seemingly in-
hibits GLP-1 secretion via its action on a-adrenergic receptors, its
secretion is stimulated by isoproterenol, and this effect can be blocked
by co-infusion of the b-adrenergic receptor antagonist propanolol
[337]. These data collectively suggest that intestinal GLP-1 secretion is
stimulated by cholinergic and b-adrenergic receptor signaling and
inhibited by activation of a-adrenergic receptors.
GRP is produced and released by GRPergic neurons of the enteric
nervous system [338]. In rats, infusion of GRP stimulates the secretion of
GLP-1 while administration of the GRP antagonist BW10 blocks GLP-1
secretion when fat is directly administered into the duodenum [339].
GRP stimulation of GLP-1 secretion has also been demonstrated for rat
L-cell cultures and in preparations of rat ileum [323,335]. Notably, GRP
regulation of glucose handling is not fully dependent on GLP-1 signaling,
because GRP also directly stimulates insulin secretion in the isolated

perfused dog pancreas [340] and further delays gastric emptying
[341,342]. Nonetheless, mice deficient for GRP have impaired glucose
tolerance, reduced first-phase insulin secretion and impaired GLP-1
secretion in response to an oral glucose challenge [343].
In summary, there are several mechanisms that may contribute to the
rapid increase in GLP-1 secretion following nutrient intake. Nutrient-
induced GLP-1 secretion can occur from L-cells located in the prox-
imal small intestine with induction of GLP-1 secretion as early as
digested nutrients leave the pylorus. The glucose concentration after a
meal may exceed the absorptive capacity in the proximal intestine so
that the ingested glucose rapidly reaches the more distally located L-
cells. Neuroendocrine reflexes may also trigger GLP-1 secretion in
addition to direct nutrient-induced stimulation of L-cell GLP-1 secretion
[344]. Current data suggest that when chyme enters the duodenum it
triggers GIP release in the proximal gut. The local increase in GIP
stimulates vagal afferent transmission followed by activation of vagal
efferents and enteric neurons that release acetylcholine and/or GRP to
stimulate GLP-1 release from the distal gut. When the nutrients sub-
sequently reach the distal gut, direct contact with the L-cells then
triggers additional GLP-1 secretion into the circulation (as also
reviewed in [320]).
Other factors influencing GLP-1 secretion include activation of the
olfactory receptor OR51E1 using nonanoic acid, which stimulates
secretion of GLP-1 and PYY in human and rodent enteroendocrine L-
cells [345]. More recently, ghrelin was identified to stimulate GLP-1
secretion in murine and human L-cell cultures [322]. In mice, pe-
ripheral administration of ghrelin further enhances glucose-stimulated
GLP-1 secretion and improves glucose tolerance, an effect that is
blocked by pre-administration of the ghrelin receptor antagonist D-Lys
GHRP6 and that is absent in GLP-1R KO mice [322].

6.5.2. Endocrine regulation of central GLP-1 secretion
As discussed above, in addition to enteroendocrine L-cells, GLP-1 is
also produced in a discrete set of non-TH-positive neurons in the
caudal portions of the NTS [86,148,346e348], and these hindbrain
GCG þ positive neurons are the primary source of endogenous brain
GLP-1 [90]. Either peripheral administration of leptin [349] or gastric
balloon distention [350] acutely activates GLP-1-producing neurons in
the NTS, as assessed by cFos immunoreactivity. Direct electrical
stimulation of the NTS evokes glutamatergic excitatory post-synaptic
currents (EPSCs) in GCG þ positive neurons [351]. Generation of
mice that express eYFP under control of the Gcg promoter has enabled
the isolation and characterization of NTS GCG þ neurons in ex vivo
tissue slices [351]. Electrophysiological whole-cell voltage- and
current-clamp recordings in horizontal or coronal brainstem slices has
revealed a rapid leptin-induced depolarization of these NTS
GCG þ neurons, thus confirming the ability of leptin to directly stim-
ulate central GLP-1 secretion [351]. Of note, the hindbrain
GCG þ neurons lack the GLP-1 receptor such that they cannot be
directly activated by peripherally-derived GLP-1 [351]. In addition,
neither electrophysiological administration of PYY, melanotan II, nor
ghrelin stimulates these neurons in isolated NTS brain slices [351]. In
contrast, leptin [351], CCK, and epinephrine [352] stimulate Gcg
neurons. In the NTS, neurons expressing GLP-1 also express the leptin
receptor [351,353]. Electrical stimulation of the solitary tract indicates
that PPG neurons in the NTS are second-order neurons that receive
direct input from vagal afferents. Thus, peripheral endocrine signals,
such leptin or GLP-1, can via activation of vagal afferents trigger
central activation of PPG neurons in the NTS [351].
CCK-induced firing of the NTS GCG þ neurons can be blocked by
treatment with the glutamate receptor antagonist DNQX or by inhibition
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of a1-adrenergic signaling [352]. Consistent with these findings,
peripherally administered CCK induces cFos immunoreactivity in GLP-
1-producing neurons of the hindbrain vagal complex of the NTS [354],
and surgical vagal deafferentation reduces CCK-induced NTS neuronal
cFos activation by approximately 50% [355]. Thus, these neurons are
able to sense and respond to a variety of peripheral signals that help to
regulate both short and long-term energy balance. Indeed, similar to
chronic blockade of CNS GLP-1R, viral knockdown of GLP– expressing
neurons in rats increases body mass, and specifically body adiposity
[356]. In a recent report, chemogenetic stimulation of Gcg neurons
reduced food intake without conditioning avoidance, and this occurred
when the animals were fed or fasted or were fed chow or HFD [357].
On the other hand, acute chemogenetic inhibition of these neurons did
not increase ad lib feeding but did increase refeeding after a fast and
blocked stress-induced hypophagia [90]. In summary, the gluta-
matergic GLP-1-producing neurons in the NTS are activated by mul-
tiple peripheral signals and regulate many aspects of feeding behavior.
This CNS GLP-1 system does not seem to be activated by peripherally-
secreted (endogenous) GLP-1 and therefore may be distinct from the
peripheral GLP-1 system.

7. THE GLUCAGON RECEPTOR FAMILY

GLP-1, GLP-2, glucagon, GIP, secretin, and growth hormone-releasing
hormone (GHRH) belong to a group of structurally related peptides that
promote their biological action via binding to structurally similar G
protein-coupled receptors (GPCRs) of the class B family [358,359]. All
members of this family are seven transmembrane Gas-coupled re-
ceptors that increase levels of cAMP through activation of adenylate
cyclase [359]. Each receptor of this family is concisely named based on
its single and unique endogenous ligand (GLP-1R, GLP-2R, GCGR,
GIPR, SCTR, and GHRHR). Under physiological conditions, most studies
report no meaningful cross-reactivity among the peptide ligands and
the receptors of this family [359,360].
Cloning of rat and human pancreatic GLP-1R cDNA documented that
ligand-induced activation of a single unique GLP-1R increases intra-
cellular levels of cAMP and also that GLP-1, but not glucagon, GIP, VIP,
or secretin, activates GLP-1R [360e364]. In the pancreas, glucagon
has physiologically relevant cross-reactivity with GLP-1R, with an EC50
of 36.4 � 0.22 nM, but there is no affinity of GLP-1 to the glucagon
receptor [365]. The interaction of glucagon with GLP-1R is important
for insulin secretion in the b-cells [365]. Cloning of the human
pancreatic GLP-1R cDNA was also used to demonstrate comparable
binding affinity of exendin-4 and exendin (9e39) to human GLP-1R
[363], and consolidated the work of Jean-Pierre Raufman and John
Eng that identified exendin-4 as a GLP-1 paralog [366] and exendin
(9e39) as a GLP-1R antagonist [367].

7.1. Tissue distribution of GLP-1R
The presence of GLP-1R was first demonstrated in rat insulinoma
RINm5F [368], RIN5AH [369], and RIN1046-38 cells [82] using cAMP
accumulation assays and radioligand binding. Subsequent studies then
confirmed the presence of GLP-1R in these and other insulinoma cell
lines [369e376] as well as in somatostatin-secreting cells [370,375]
and in islets isolated from rats [377] and humans [378].
Expression of GLP-1R was also demonstrated in the rat lung [379] as
well as in the human brain, kidney, stomach and heart, with no
expression of GLP-1R in liver, skeletal muscle or adipose tissue
[380,381] Although early efforts [380,381] failed to consistently detect
the GLP-1 receptor in adipose tissue, more recent studies have

unequivocally identified the GLP-1R expressed in adipocytes. These
recent studies include the finding of the receptor in differentiating
mouse 3T3-L1 pre-adipocytes [382e384], adipocytes formed from
human bone marrow-derived mesenchymal stem cells [385], human
epicardial fat [386], and in human visceral white adipose tissue [387].
Nonetheless, GLP-1 and liraglutide induce adipocyte formation in vitro
and in vivo, and adipogenesis is decreased in preadipocytes lacking
GLP-1R [384]. Autoradiography studies identified binding of [125I]GLP-
1 and [125I][Tyr39]exendin-4 in the rat lateral septum, subfornical
regions, thalamus, hypothalamus, interpenduncular nucleus, poster-
odorsal tegmental nucleus, area postrema, inferior olive, and NTS
[388]. Similar findings on the central distribution of GLP-1R mRNA in
rats have been reported using S35-UTP-labeled probes complemen-
tary to the PPG and GLP-1R mRNA [347]. In non-human primates, the
highest GLP-1 immunoreactivity has been demonstrated in various
nuclei of the hypothalamus, the area postrema, the NTS, and the dorsal
motor nucleus of the vagus [389]. In the human brain, expression of
GLP-1R mRNA has been reported in the cerebral cortex, hypothalamus,
hippocampus, thalamus, caudate-putamen, and globus pallidum
[390].
A general caveat when analyzing the tissue distribution of the GLP-1R
protein is the lack of sufficiently selective and commercially available
antibodies [391]. However, Novo Nordisk has recently developed
monoclonal antibodies which, through targeting of the extracellular
domain of GLP-1R, allow the detection of GLP-1R in human and rodent
tissues with improved selectivity [392e394]. Using these antibodies,
immunohistochemical studies in tissues from humans and non-human
primates confirmed the presence of GLP-1R in the pancreas with broad
expression in the b-cells, weaker abundance in the acinar cells, and no
expression in the duct cells [392]. GLP-1R was further detected in the
arterial walls of the kidney and lung, in heart myocytes of the sinoatrial
node, and in the Brunner’s gland of the duodenum [392]. In heart
myocytes, expression of GLP-1R is restricted to the sinoatrial node and
is not observed in other cardiomyocytes [392], which aligns with the
scattered expression pattern of GLP-1R in the atrium but not elsewhere
in the heart [395]. Low expression of GLP-1R occurred in parietal cells
and smooth muscle cells of the stomach and in myenteric plexus
neurons of the gut with no expression in the liver and thyroid gland
[392]. In mice, GLP-1R-positive cells were identified in several regions
of the telencephalon (olfactory bulb, amygdala, preoptic area, nucleus
accumbens, septum), diencephalon (hypothalamic arcuate nucleus,
paraventricular nucleus, dorsomedial nucleus, the lateral hypothalamic
nucleus and the supraoptic nucleus) and regions of the mesenceph-
alon [393]. In the medulla, GLP-1R was observed in the area postrema,
NTS, and lateral reticular nucleus [393].
Complementary data on the distribution of GLP-1R have been reported
using other validated techniques, including in situ hybridization and highly
sensitive specific antisera. Further, studies of transgenic animals con-
trolling the expression of green fluorescent protein (GFP) downstream of
the GLP-1R promoter foundGLP-1R promoter activity in pancreaticb- and
d-cells, vascular smooth muscle, cardiac atrium, the gastric antrum and
pylorus, enteric neurons, and vagal and dorsal root ganglia [395]. In the
brain, major GLP-1R-positive regions include the area postrema, ARC,
VMH, and the ventrolateral medulla with lower expression in the PVH and
NTS [395,396].While GLP-1R is solidly expressed in the pancreaticb- and
d-cells, most studies report absence [397e399] or very restricted
expression of GLP-1R in a small subset (<10%) ofa-cells [395]. In amore
recent study, detection of GLP-1R using a fluorescent GLP-1R antago-
nistic peptide label (Luxendin645) located GLP-1R on the cell surface of
w18% of mouse a-cells [400].
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7.2. Ligand-induced activation of GLP-1R
The rat and human GLP-1R protein comprises 463 amino acids with
90% sequence homology between these species [359,360,364]. GLP-
1 binding to and activation of GLP-1R is a complex process that is
comprehensively summarized in previous review articles [359,401]. As
a class B GPCR, GLP-1R comprises seven transmembrane helices
(TMH) interconnected by intracellular loops, with a C-terminal intra-
cellular domain and a large (w120 amino acid) N-terminal extracel-
lular domain (ECD) [401]. Upon biosynthesis of the receptor in the
endoplasmic reticulum (ER), the N-terminal ECD of GLP-1R (and of all
other class-B GPCRs) contains a short leader sequence encoding for a
signal peptide. This signal peptide is of crucial importance for trans-
location of the receptor across the ER as well as for trafficking of the
receptor to the cell surface [359,401e404]. Underlining the impor-
tance of the signal peptide in receptor trafficking, blocking the signal
peptide through site-directed mutagenesis causes retention of the
receptor within the ER [404]. Following translocation of the receptor
across the ER, the signal peptide is enzymatically cleaved by a
peptidase, leaving behind the full length GLP-1R with the N-terminal
helix at the beginning of the ECD and four b-strands forming two
antiparallel sheets that are connected through three disulfide bonds
between six cysteine (Cys) residues [401]. The disulfide bond between
Cys1 and Cys3 connects the N-terminal a-helix of the receptor to the
first b-sheet, while the disulfide bond between Cys2 and Cys5 connects
two b-sheets and the disulfide bond between Cys4 and Cys6 holds the
central b-sheets in proximity to the C-terminal domain of the receptor
[401,405e409].
Several studies have aimed to identify the functional GLP-1 motifs
orchestrating its interaction with GLP-1R [410e412]. Analysis of the
crystal structure of GLP-1R linked to GLP-1 suggests that certain
residues in the a-helical region of GLP-1 interact with residues in the
N-terminal ECD of GLP-1R [407,409]. These data agree with reports
demonstrating a crucial role of the GLP-1R ECD for recognition by GLP-
1 [405,413e416]. Although these studies convincingly demonstrate
the importance of the GLP-1R ECD for ligand binding, this interaction
seems less important for ligand-induced activation of the receptor
[401]. Accordingly, exendin (9e39) and exendin-4 have similar ligand
binding affinities to the human GLP-1R, yet exendin (9e39) is not able
to activate the receptor [363]. Furthermore, despite a low affinity to
bind GLP-1R, [Ser(2)]exendin (1e9) is nonetheless able to activate the
receptor with low potency [417]. Taken together, the ligand motifs
required for receptor binding seem to differ from those motifs required
for receptor activation. Indeed, for most (if not all) members of the
glucagon receptor family, the activation of the receptor requires
interaction of the N-terminal residues of the ligand with the trans-
membrane helices and extracellular loops of the receptor [401,418e
420]. A two-domain model has emerged and suggests that GLP-1
binds via its a-helical and C-terminal motifs to the N-terminal ECD
of GLP-1R followed by the activation of GLP-1R through binding of the
N-terminal residues of GLP-1 with the transmembrane helices and
extracellular loops of the receptor [401,421,422].
A model for ligand-induced receptor conformation has also been
proposed based on comparative molecular simulations using GLP-1R
bound to positive and negative allosteric modulators [423]. Based on
this model, a negative allosteric modulator binds and deactivates GLP-
1R through binding between the cleft of the GLP-1R helices VI and VII,
thereby pushing helix VI to an inactive state that prevents association of
the receptor with the G protein [423]. A positive allosteric modulator
binds and activates GLP-1R through binding between helix V and VI,
thereby creating an intercellular binding site for the G protein [423].
Similar conclusions have been reached by analysis of the GLP-1 bound

receptor conformation using cryo-electron microscopy [424] and by
analyzing the crystal structure of GLP-1R bound to truncated peptide
agonist [425].

7.3. Ligand-induced biased GLP-1R agonism
Activation of GLP-1R stimulates formation of cAMP via Gs signaling,
increases intracellular Ca2þ via the Gq/11 pathway, and promotes
ERK1/2 signaling via recruitment of b-arrestin [426e431]. Despite
binding to the same receptor, different GLP-1R ligands can engage
selective pathways to elicit different cellular responses [427,431,432].
Such biased agonism is believed to have therapeutic value because
certain ligands might accentuate specific signaling pathways that
optimize therapeutic outcome. By assessing cAMP formation, Ca2þ

accumulation and ERK1/2 phosphorylation, biased agonism was
demonstrated for exendin-4 and oxyntomodulin, which, relative to
GLP-1, have a bias for b-arrestin signaling [427,431,432]. In INS-1
cells, knockdown of b-arrestin attenuates GLP-1-stimulation of insu-
lin secretion and decreases activation of ERK1/2 and CREB [429]. b-
arrestin also promotes cell proliferation and survival via mechanisms
that include activation of ERK1/2 [433]. Relative to GLP-1 and exendin-
4, the biased GLP-1R agonist exendin P5 favors G protein coupled
signaling over recruitment of b-arrestin [434]. In lean mice, exendin P5
improves glucose handling with greater potency than exendin-4 but
has comparable efficacy to exendin-4 when analyzed more chronically
in DIO and ob/ob mice [434]. In vitro comparison of receptor occupancy
with ligand potency and efficacy demonstrated that the bias of exendin
P5 results from enhanced efficacy in Gas-mediated cAMP signaling
rather than a loss of b-arrestin recruitment [435]. Functional studies of
GLP-1R signaling in combination with three-dimensional modeling of
the ligandereceptor complex identified the GLP-1R ECD as the key
molecular trigger of biased agonism. Based on this model, the ligand-
specific response of the receptor is mediated by a unique receptor
conformation/stabilization that results from the specific and individual
contact of the ligand with the receptor [431]. When treated with either
GLP-1 or exendin P5, the greatest difference in the ligand-bound re-
ceptor structure is observed in transmembrane 1 (TM1), the extra-
cellular portions of TM6 and TM7, and the ECL3 conformation,
suggesting that these ECDs modulate biased signal transduction [435].

7.4. GLP-1R desensitization and resensitization
Upon ligand binding, GPCRs located on the cell surface transduce the
extracellular signal to the interior of the cell. At some point, the ligand-
induced receptor activation has to be terminated, and the sensitivity of
the receptor to be activated by its ligand has to be restored. Data
related to the molecular mechanisms leading to termination of GLP-1R
activity (desensitization) and subsequent GLP-1R resensitization are
incompletely understood and partially conflicting.
Desensitization of GPCRs is generally achieved by two families of
serine/threonine kinases, the second-messenger-dependent protein
kinases and the receptor-specific G protein-coupled receptor kinases
(GRKs) [436,437]. After ligand-induced receptor activation, these ki-
nases phosphorylate the receptor. This induces intracellular recruit-
ment of arrestin, which then binds to the GPCR and uncouples the
receptor from its heterotrimeric G proteins [436,437]. Another potential
mode of receptor deactivation is the translocation of the ligande
receptor complex to intracellular compartments (endosomes), such
that the now intracellular receptor is physically dissociated from the
membrane [436,437]. While such ligand-induced receptor internali-
zation has been demonstrated for many GPCRs (including GLP-1R), its
importance for receptor deactivation is controversial and is potentially
receptor specific. While some studies support a role of receptor
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internalization in ligand-induced receptor desensitization [438,439], no
such role has been demonstrated for the b2 adrenergic receptor (b2-
ADR) [440e443] or the receptors for angiotensin1A [444], D1 dopa-
mine [445], m2mACh [446], neurokinin 1 [447], histamine H2 [448],
secretin [449], or GLP-1 [450e452]. However, although it may not be
relevant for receptor inactivation, receptor internalization is neverthe-
less important for receptor resensitization. A commonly proposed
model is that the phosphorylated and arrestin-bound receptor, along
with a previously membrane-bound G protein-coupled receptor
phosphatase (GRP), is engulfed into the maturing endosome. The
acidic pH of the endosome (pHw5e6) then causes a change in the
receptor conformation that enables the GRP to bind and dephos-
phorylate the receptor. Following subsequent dissociation of the ligand
and the arrestin, the re-sensitized receptor either travels back to the
plasma membrane or is degraded in the lysosomes [437,453].
Ligand-induced internalization and recycling of GLP-1R has been
demonstrated in Chinese hamster lung fibroblasts [453], in rat insu-
linoma cells [429,453,454], and in rat pancreatic BRIN BD11 cells
[452]. In vitro studies using 125I-labeled GLP-1 (7-36amide) in rat
insulinoma cells indicate that internalization of the ligand-GLP-1R
complex is saturable and time- and temperature-dependent [454].
At the plasma membrane, GLP-1R recruitment of arrestin is observed
as early as 1 min after stimulation with exendin-4 [452]. Surface re-
expression of GLP-1R after ligand-induced GLP-1R endocytosis ap-
pears with a half-time of 15 min with no GLP-1R endocytosis upon
treatment of cells with exendin (9e39) [453]. Notably, in the endo-
somes, the receptoreligand complex co-localizes with adenylate
cyclase. Pharmacological inhibition of GLP-1R endocytosis by dynasor
attenuates cAMP formation in BRIN BD11 pancreatic b-cells and
lowers PKA substrate phosphorylation, resulting in a lesser magnitude
of glucose-stimulated insulin secretion [450]. These data are consis-
tent with reports that the internalized GLP-1R is to a certain extent still
capable of stimulating insulin secretion from pancreatic b-cells [451].
Continued cAMP generation after GLP-1R sequestration (internaliza-
tion) is accompanied by joint translocation of the activated Gas subunit
along with GLP-1R into the endosome [452]. Interestingly, generation
of cAMP by the internalized GLP-1R persists after recruitment of
arrestin, which indicates that arrestin recruitment is not essential for
GLP-1R desensitization [452]. In contrast to these findings, siRNA
mediated knockdown of b-arrestin in INS-1 cells attenuates GLP-1-
induced phosphorylation of CREB, ERK1/2, and IRS-2 and diminishes
the insulinotropic effect of GLP-1 in conditions of low (2.5 mM) and
high glucose (25 mM) [429]. These studies suggest that recruitment of
b-arrestin following ligand-induced activation of GLP-1R is important
for the insulinotropic effect of GLP-1. However, knockdown of b-
arrestin has minimal effect on GLP-1R internalization or desensitization
[429]. In one recent report, exendin-4 analogs were modified on their
N-terminal end to modulate GLP-1R trafficking and/or signaling [455].
The insulinotropic efficacy of these biased-signaling molecules was
inversely correlated to the receptor internalization; i.e. insulin release
was greatest using molecules that retain GLP-1R at the cell
surface [455].
In summary, accumulating evidence indicates that ligand-induced
GLP-1R signaling is partially preserved after endocytosis of the re-
ceptor. Consistent with this, continuous cAMP formation has been
demonstrated upon internalization of the receptors for parathyroid
hormone [456], thyroid-stimulating hormone [457], and sphingosine
1-phosphate [458]. The exact mechanisms underlying continuation of
receptor signaling after sequestration of the ligandereceptor complex
seemingly involve preserved association of the receptor with the Gas
subunit. The residence time of the ligand interaction with the receptor

is commonly hypothesized to affect the duration an internalized re-
ceptor can continue to signal [459].

7.5. Studies using GLP-1R-deficient animals
Mice globally deficient for GLP-1R are viable and have no overt
metabolic phenotype when fed a standard chow diet ad libitum [460e
462]. However, these mice are mildly hyperglycemic under conditions
of fasting and display impaired glucose clearance during oral and
intraperitoneal glucose tolerance tests (OGTT and ipGTT), with
decreased glucose-stimulated insulin secretion [460,461] and normal
pre- and postprandial levels of glucagon [461]. Although the incretin
effect is diminished in GLP-1R KO mice, these mice have normal body
weight and food intake on regular chow diets [460e462]. When
chronically fed a high-fat diet (HFD), GLP-1R KO mice are paradoxically
leaner than their wild-type controls yet are more glucose intolerant
[462]. The molecular mechanism underlying the diminished insulino-
tropic response of the GLP-1R KO mice to orally administered glucose
likely reflects loss of GLP-1R-dependent augmentation of insulin
secretion. While GLP-1 enhances proinsulin expression
[82,372,373,463,464], there are no differences in pancreatic insulin
expression in GLP-1R KO mice [461]. Consistent with the hypothesis
that GLP-1R is the only endogenous receptor for GLP-1, either
peripherally [465e467] or centrally [460] applied GLP-1R agonists fail
to affect glycemic control, body weight, and food intake in mice
globally deficient for GLP-1R. In summary, the most obvious metabolic
phenotype of the global germline GLP-1R KO mice is diminished insulin
secretion in response to oral glucose, and a paradoxical protection
from diet-induced obesity despite impaired glycemic control.

8. MOLECULAR MECHANISMS UNDERLYING GLP-1-INDUCED
INSULIN SECRETION

Induction of glucose-dependent insulin secretion by GLP-1 has been
demonstrated in vivo in numerous species including rodents [468e
471] and humans [83] as well as in the isolated perfused pancreas
of rats [81,472e474], dogs [473], pigs [80,475], and humans [77],
and in isolated islets [476] and cultured pancreatic cell lines [82,370e
373,472,477e479]. GLP-1 (7e37) is roughly 100-fold more potent
than glucagon to stimulate the secretion of insulin [480]. Nevertheless,
intra-islet glucagon levels are much higher than circulating levels, and
studies in mice highlight the importance of glucagon, acting through
the GLP-1 receptor in the control of glucose-stimulated insulin
secretion [173,365]. The key importance of GLP-1 and GIP in stimu-
lating insulin secretion under conditions of hyperglycemia is the finding
that oral glucose-induced insulin secretion is more impaired in mice
that lack both incretin hormone receptors [481e483].

8.1. Acute insulinotropic effects of GLP-1
In b-cells, binding of GLP-1 to its receptor leads to activation of
adenylate cyclase (AC) and subsequently to an increase in cAMP
(Figure 5) [82]. Overexpression of GLP-1R in rat insulinoma RIN1046-
38 cells results in elevated levels of basal cAMP [484]. While both GLP-
1 (1e37) and GLP-1 (7e37) stimulate insulin secretion, GLP-1 (7e37)
is efficacious at a lower dose. At a dose of 5 mM, both GLP-1 (1e37)
and GLP-1 (7e37) increase cAMP levels in RIN1046-38 cells but at a
dose of 5 nM, only GLP-1 (7e37) enhances cAMP levels [82].
Consistent with the increase in cAMP, GLP-1 stimulation of insulin
mRNA is substantially greater upon treatment of RIN1046-38 cells with
GLP-1 (7e37) relative to treatment with GLP-1 (1e37) [82]. Further
supporting the greater insulinotropic potency of GLP-1 (7e37) relative
to GLP-1 (1e37), GLP-1 (7e37) stimulates insulin release in the

Review

14 MOLECULAR METABOLISM xxx (xxxx) xxx � 2019 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

MOLMET885_proof ■ 2 October 2019 ■ 14/59

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


perfused rat pancreas at a concentration of 50 pM whereas treatment
with GLP-1 (1e37), even at a dose of 0.5 mM, has no effect on insulin
secretion [81]. Underlining the role of cAMP in the insulinotropic effect
of GLP-1, enhanced cAMP hydrolysis through overexpression of the
cyclic nucleotide phosphodiesterase 3B (PDE3B) diminishes GLP-1-
induced insulin secretion [485]. Insulin and IFG-1 increase levels of
PDE3B, and treatment of hamster clonal b-cells (HIT-T15) with IGF-1
deteriorates the insulinotropic effect of GLP-1 [486]. Transgenic mice
overexpressing PDE3B under control of the rat insulin 2 promoter are
glucose intolerant and have impaired insulin secretion following an
intravenous glucose challenge [487]. In summary, there is substantial
evidence indicating that cAMP is an important second messenger
driving the acute insulinotropic effect of GLP-1.
The GLP-1-induced rise in cAMP leads to activation of PKA and
enhanced signaling via exchange proteins directly activated by cAMP
(Epac) (Figure 5) [488e490]. cAMP activates PKA, which phosphory-
lates the b2 subunit of the L-type VDC channels and potentially the
Kir6.2 and SUR1 subunits of the KATP channels [491]. This conse-
quently increases the sensitization of the KATP channels to ATP, leading
to closure of the KATP channels, depolarization of the cell membrane,
and opening of VDC channels (Figure 5). The subsequent Ca2þ influx
promotes exocytosis of the insulin granules and acute secretion of
insulin into the circulation. At the same time, the GLP-1-activated PKA
inhibits voltage-gated Kþ (Kv)-channels, preventing membrane repo-
larization and boosting Ca2þ influx via prolonged opening of the VDC
channels (Figure 5) [492]. Inhibition of PKA in isolated islets attenuates
GLP-1-induced insulin secretion [490].
The acute insulinotropic effect of GLP-1 does not fully depend on PKA
signaling [493]. Up to 50% of the GLP-1-induced insulin release can be
mediated through signaling via Epac [489,494,495]. Similar to PKA,
members of the Epac family contain an evolutionarily conserved cAMP
binding domain which enables the members of this family (Epac1 and
Epac2) to regulate diverse biological functions in a cAMP-dependent
manner [496]. Both Epac1 and Epac2 are expressed in the pancreas

[495,497]. In b-cells, the Epac proteins stimulate Ca2þ release from
the endoplasmic reticulum (ER), increasing insulin secretion by
increasing the intracellular pool of Ca2þ [488]. cAMP activates Epac2
through direct binding. In high glucose conditions where there is an
enhanced Ca2þ influx into the b-cells via the VDC channels, Epac2
opens RYR Ca2þ channels in the ER, further increasing intracellular
Ca2þ levels, and potentiates insulin exocytosis (Figure 5) [489]. The
GLP-1/Epac2 mediated opening of the RYR Ca2þ channels in the ER
depends on the simultaneous Ca2þ influx via the VDC channels. This
process, generally referred to as calcium-induced calcium release
(CICR) (Figure 5) [489,498e500], ensures that the insulinotropic action
of GLP-1 is highly dependent on the ambient glucose concentration.
Accordingly, in the isolated perfused rat pancreas, GLP-1 fails to
stimulate insulin release at glucose concentrations <2.8 mM, but
amplifies insulin release at glucose concentrations>6.6 mM [82,480].
Consistent with this, clinical studies demonstrate that GLP-1R agonism
improves glycemic control in patients with type 2 diabetes but with
little risk of hypoglycemia when GLP-1 is used without accompanying
sulfonylurea therapy [501e507].
Beyond its ability to increase the intracellular pool of Ca2þ, GLP-1 also
affects insulin secretion via cAMP-mediated regulation of exocytosis
(Figure 6). In isolated murine b-cells, GLP-1 stimulates exocytosis of
the insulin granules and this can be blocked by co-treatment of GLP-1
with the adenylate cyclase inhibitor MDL 12330A [508]. As reviewed
previously [508], the insulin granules are organized in distinct pools
that vary in their release competence. Most granules (>99%) belong to
the immature “reserve” pool that must undergo a series of maturation
processes to acquire release-competence. Only 0.5e1% of the
granules belong to the readily releasable pool (RRP), from which only a
subset, the immediately releasable pool (IRP), is located in the vicinity
of the Ca2þ channels and is released with minimal time delay upon
opening of the Ca2þ channels [508]. cAMP enhances insulin exocytosis
by promoting maturation of the granules and thus by increasing the
pool of release-competent (RRP/IRP) granules [508e510].

Figure 5: Schematic on GLP-1 mediated insulin secretion in the b-cell. GLUT1/2: glucose transporter 1/2; AC: adenylate cyclase; PKA: protein kinase A; Epac2: exchange
protein activated by cAMP; Pdx-1: pancreatic and duodenal homeobox 1; CICR: calcium-induced calcium release. For further explanations, please see text.
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cAMP regulates exocytosis via PKA-dependent and -independent
mechanisms. GLP-1-stimulation of exocytosis is partially inhibited
when isolated mouse b-cells are treated with the PKA inhibitor H89 but
is fully inhibited upon co-treatment with H89 with an antiserum against
Epac2 (a.k.a. cAMP-GEFII) [508]. Epac2 binds to the nucleotide binding
domain-1 of the SUR1 subunit of the KATP channel and this interaction
is aborted when levels of cAMP increase (Figure 6) [511]. Apart from
binding SUR1, Epac2 also binds to a series of molecules that potentially
participate in transport, priming and fusion of the insulin vesicles,
including Rab3, Rim2, and the Ca2þ sensor Piccolo [493,512,513].
Epac2 interaction with Rim2 and Piccolo is crucial for cAMP-induced
Ca2þ-dependent insulin secretion and is not blocked by inhibition of
PKA [493,512,513]. A hypothetical model for the regulation of
exocytosis by Epac2 is that the GLP-1-induced rise in cAMP leads to a
conformational change of Epac2, which then dissociates from SUR1
and stimulates dissociation of Rim2 from the a1.2 subunit of the L-
type Ca2þ channel (Figure 6). The dissociated Epac2 then dimerizes
with Rim2 and Piccolo in a Ca2þ-dependent manner followed by in-
duction of exocytosis of the insulin granules through binding of the
Epac2/Rim2/Piccolo complex to Rab3 which is located at the mem-
brane of the insulin granules (Figure 6) [508,511]. Another PKA-
independent mechanism of GLP-1 stimulation of insulin secretion in-
cludes PKC-dependent membrane depolarization via activation of
transient receptor potential cation channel subfamily M member 4
(Trpm4) and Trpm5 [514]. In murine and human islets, GLP-1, via
phospholipase C (PLC), leads to an activation of PKC, followed by
membrane depolarization and stimulation of insulin secretion. Mem-
brane depolarization by GLP-1 was mimicked by the PKC activator
phorbol myristate acetate (PMA) and was not affected by treatment
with either the PKA inhibitor myr-PKI, the KATP channel blocker
tolbutamide, or the L-type Ca2þ channel inhibitor isradipine [514]. The
PKC-dependent effect of GLP-1 on membrane depolarization was
mediated by activation of Trpm4 and Trpm5, and GLP-1 failed to in-
crease electrical activity and insulin secretion in islets isolated from
Trpm4 and Trpm5 KO mice [514]. Another recent report suggests that
incretin-stimulation of insulin secretion requires incorporation of
glutamate in the insulin granules. In murine pancreatic Min6-K8 cells,
prevention of cytosolic glutamate production by KO of a key component
of the malate-aspartate shuttle or triple KO of the vesicular glutamate
transporters Slc17a6, Slc17a7, and Slc17a8 impaired GLP-1-induced
insulin secretion [515].
GLP-1 also lowers blood glucose in patients with type 1 diabetes, e.g.
via its ability to slow down gastric emptying, indicating that not all of
GLP-1s glycemic effects derive from its action on the b-cell or insulin

action [516,517]. Post-prandial levels of portal blood glucose are
elevated and insulin levels decreased in rats with knockdown of GLP-
1R in vagal afferent neurons, suggesting that GLP-1 also regulates
blood glucose via activation of vagal afferent GLP-1 receptors [518].
These data are consistent with a recent report showing that GLP-1
stimulation of insulin secretion requires GLP-1R and neuronal nitric
oxide synthase in the enteric nervous system [519]. Moreover, mice
with targeted inactivation of GLP-1R in autonomic neurons targeted by
Phox2b, including the nodose ganglion, exhibit impaired glucose ho-
meostasis, accelerated gastric emptying, and increased levels of GLP-
1, glucagon, and insulin, supporting the importance of vagal afferent
GLP-1Rs for metabolic homeostasis [520].

8.2. Effects of GLP-1 on (Pro-)insulin synthesis
In addition to the ability of GLP-1 to stimulate insulin secretion via
signaling through PKA and Epac2, GLP-1R agonism also increases
glucose metabolism by promoting insulin synthesis (Figure 5). GLP-1
stimulation of insulin gene expression was first reported by Daniel
Drucker in rat insulinoma RIN1046-38 cells [82] and was subsequently
confirmed in several independent studies [372,373,463,464]. In RIN
1046-38 cells, the GLP-1-induced rise in insulin mRNA is accompa-
nied by an increased expression of GLUT1 and hexokinase1 [464].
Treatment with the transcription inhibitor actinomycin D blocks GLP-1
stimulation of GLUT1 and hexokinase1 expression in these cells
without affecting GLP-1 induction of insulin expression [464]. These
data led to the hypothesis that the increased insulin mRNA levels
occurring upon GLP-1 exposure might be due to stabilization of the
mRNA, whereas the elevated expression of GLUT1 and hexokinase are
due to direct transcriptional stimulation by GLP-1 [464]. Nevertheless,
GLP-1 also activates proinsulin gene transcription in islet insulinoma
cells [372,521]. Notably, induction of proinsulin expression by either
GLP-1 or forskolin can be blocked by galanin, suggesting that GLP-1
stimulation of insulin expression is cAMP dependent [373].
GLP-1-induced stimulation of insulin synthesis is initiated by Pdx1, a
transcription factor implicated in development of the pancreas [490]
and in MODY type-4 diabetes [522,523]. GLP-1 induced activation of
PKA increases Pdx1 expression and translocation of Pdx1 to the nu-
cleus, where Pdx1 binds to the insulin promoter to initiate insulin
expression and synthesis (Figure 5) [490,524]. As demonstrated in
RIN1046-38 cells, PKA activation of Pdx1, but not glucose-induced
Pdx1 nuclear translocation, can be blocked either by PKA inhibition
or by using a cAMP antagonist, implying that GLP-1 regulates the PKA/
Pdx1 axis in a cAMP-dependent manner [490]. Accordingly, GLP-1
effects on Pdx1 can be mimicked by treatment of RIN1046-38 cells

Figure 6: Schematic on GLP-1 mediated exocytosis of the insulin granules in the b-cell. For further explanations, please see text.
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with either forskolin or the cAMP analog 8-Bromo-cAMP [490]. In
summary, GLP-1 stimulates both the synthesis and secretion of insulin
via multiple cAMP-dependent pathways.

9. GLP-1 EFFECTS ON b-CELL PROLIFERATION AND
APOPTOSIS

The prevalence of type 2 diabetes correlates with excess body weight
and also increases with age [525]. The progression to type-2 diabetes
is invariably associated with a decline in functional b-cell mass [526e
530]. Decreased b-cell proliferative capacity is also age-dependent in
rodents and humans [526,531e537]. The replication rate of human b-
cells is greatest in young childhood and puberty but declines with
increasing age [526,531,533,536]. Collectively, these observations
suggest that age-related changes in b-cell neogenesis and replication
might be causally linked to the development of type 2 diabetes
[525,532,538]. A role for b-cell dedifferentiation has also been pro-
posed [539].
Agonists of the GLP-1 receptor improve glycemic control via both
their acute insulinotropic action and, under certain circumstances,
also by chronic action to preserve b-cell mass through stimulation of
b-cell proliferation and inhibition of apoptosis (Figure 7) [540e545].
While inconsistent results have been reported, the treatment dura-
tion, age of the animal, and species under investigation as well as
diet-composition might affect the ability of GLP-1R agonism to

improve b-cell replication [540]. GLP-1R regulation of b-cell prolif-
eration and apoptosis seems to engage mechanisms that include
signaling via Pdx1. Exendin-4 stimulates b-cell proliferation and
inhibits b-cell apoptosis in wildtype mice but not in mice with b-cell
specific inactivation of Pdx1 [542]. GLP-1R agonism also promotes
b-cell growth and survival by stimulating the expression of the insulin
receptor substrate 2 (Irs2) via mechanisms that include activation of
CREB [546]. Irs2 is a substrate of the IGF1 and insulin receptor
tyrosine kinases that promote growth, function and survival of the b-
cells [547]. Consistent with this role of Irs2, increased expression of
Irs2 in b-cells improves insulin secretion in obese mice and protects
against STZ-induced b-cell destruction (as reviewed in [547]). Mice
deficient for Irs2 [544], or transgenic mice deficient in CREB activity
[546], are hyperglycemic due to severe b-cell destruction and
enhanced b-cell apoptosis. Exendin-4 improves Irs2 function by
enhancing CREB phosphorylation in vitro and in vivo [546]. Chronic
administration of exendin-4 is unable to prevent b-cell loss in mice
that are lacking Irs2 [544], demonstrating the requirement of Irs2 to
GLP-1-mediated b-cell plasticity. Stimulation of b-cell proliferation
secondary to stimulating GLP-1R is usually only observed in young
animals (during periods characterized by preserved proliferative
capacity), and not in older rodents [548]. Solid clinical proof of
slowed diabetes progression or enhanced b-cell mass has not been
provided in type-2 diabetic patients treated with any GLP-1 receptor
agonist [549].

Figure 7: Schematic on the metabolic effects of GLP-1. The shown effects include direct and indirect GLP-1 effects on metabolism. For further explanations, please see text.
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The anti-apoptotic effect of GLP-1R agonism has been demonstrated
in vivo in mice [543,550,551] and rats [552,553] as well as in several
rodent [550,551] and human [554,555] cell lines, purified rat b-cells
[543], and humans [556]. STZ-induced b-cell apoptosis is reduced
upon administration of exendin-4 [543] or GLP-1 (7e36 amide) [551]
and treatment with exendin-4 diminishes hyperglycemia induced by
STZ [543]. STZ-induced b-cell apoptosis is accelerated in mice defi-
cient for the GLP-1 receptor [543]. In isolated rat b-cells, treatment
with exendin-4 reduces the apoptotic effect induced by treatment with
pro-apoptotic cytokines, such as IL1b, TNFa, and interferon gamma
[543]. In mouse pancreatic bTC-6 cells, liraglutide enhances b-cell
survival via stimulation of anti-apoptotic signaling mechanisms that
include stimulation of PI3 kinase-dependent phosphorylation of AKT,
leading to inactivation of the pro-apoptotic protein BAD and silencing
of FoxO1 [550].
An innovative approach to assess human b-cell replication in vivo was
recently established by the group of Alvin Powers [557]. In this model,
human b-cells were grafted under the renal capsule of lean diabetic
immunodeficient NOD scid gamma mice. Using this model, exendin-4
was found to enhance b-cell proliferation in juvenile but not adult
human islets [557]. Notably, the age-dependent decline in the exendin-
4 induced b-cell proliferation was not related to changes of GLP-1R
expression, as also indicated by preservation of exendin-4-induced
insulin secretion in the adult islets [557]. However, in juvenile but
not adult human islets, exendin-4 stimulated calcineurin/NFAT
signaling and enhanced expression of proliferation-promoting factors
such as NFATC1, FOXM1, and CCNA1 [557]. [557]. Collectively, these
data suggest that the sensitivity of b-cell proliferative mechanisms to
respond to GLP-1R agonism declines with increasing age [557].

10. IMPAIRED RESPONSIVENESS OF GLP-1 TO STIMULATE
INSULIN SECRETION

GLP-1-stimulated insulin secretion has an estimated heritability of
0.53, as demonstrated in twin studies [558]. The first evidence for an
influence of genetic background on GLP-1-induced insulin secretion
was found for variation in the transcription factor 7-like 2 (TCF7L2)
[559]. Infusion of GLP-1 during a classical hyperglycemic clamp in
non-diabetic individuals results in a marked reduction of insulin
secretion in carriers of the TCF7L2 risk allele of SNP rs7903146.
Diminished insulin secretion in response to treatment with GLP-1 has
been replicated in other studies [560e562].
In addition to TCF7L2, several other genetic loci have been identified to
be associated with reduced GLP-1-induced insulin secretion, including
the loci for GLP-1R [563], wolfram syndrome 1 (WFS1) [564] and
chymotrypsinogen B1/2 (CTRB1/2) [565]. The molecular mechanisms
leading to diminished GLP-1 responsiveness associated with genetic
variation in TCF7L2 most likely includes alterations of the WNT
signaling pathway and associated b-cell proliferation and insulin gene
expression [566]. Interestingly, genetic variation in a transcriptional
regulator of the insulin gene nuclear receptor subfamily 4 group A
member 3 (Nor-1) is able to rescue TCF7L2-mediated GLP-1 resis-
tance [567]. Impairment of proinsulin conversion may be another
mechanism for TCF7L2 associated diminished GLP-1 efficacy [568].
Another plausible mechanistic explanation for a diminished “incretin
effect” is the TCF7L2-dependent repression of GLP-1R and GIPR
expression on the b-cells [569]. The association between WFS1 var-
iants and impaired incretin action may result from alterations of
endoplasmic reticulum homeostasis and, consequently, b-cell
dysfunction [566]. Recently, using an untargeted integrative genomics
approach, a set of genes that contained variants associated with GLP-

1-stimulated insulin secretion were described, which at the same time
have the potential to physically interact in the b-cell and are enriched
for pathways that are important for insulin secretion [570]. Finally, the
GLP-1 effects on insulin secretion are dependent on the metabolic
state of the individual. Incretin action may also be reduced during
hyperglycemia and in some individuals with diabetes, prediabetes and
insulin resistance [571].
In summary, a reduced incretin effect on insulin secretion is associated
with both genetic and metabolic alterations. The presence of both
hyperglycemia and genetically determined GLP-1 resistance can
potentiate the impairment of GLP1-induced insulin secretion [572].

11. GLP-1 EFFECTS ON GLUCAGON SECRETION

GLP-1 also decreases blood glucose by suppressing glucagon secre-
tion (Figure 7) [475,573,574]. GLP-1 inhibition of glucagon secretion
has been demonstrated in vivo in numerous species including mice
[575], dogs [576], and humans [516,517,573,577e581], as well as in
the isolated perfused pancreas of rats [473,474,582], dogs [473], and
pigs [475] and in isolated intact murine islets [583]. Clamp studies in
patients with type 2 diabetes indicate that GLP-1 inhibition of glucagon
secretion is equally important for lowering blood glucose as GLP-1
stimulation of insulin release [578].
The mechanisms underlying GLP-1 suppression of glucagon secretion
are complex. In the isolated perfused pig pancreas, GLP-1 dose-
dependently stimulates the secretion of somatostatin [475] which is a
potent suppressor of glucagon secretion [584]. Somatostatin inhibits
glucagon secretion via paracrine mechanisms and, when blocked,
stimulates glucagon release in isolated rat islets [585,586]. In the
isolated perfused rat pancreas, co-infusion of GLP-1 with a specific
somatostatin receptor 2 (SSTR2) antagonist (PRL-2903) abolishes the
GLP-1-induced suppression of glucagon secretion [582]. While these
data point to a prominent role of somatostatin in mediating GLP-1
suppression of glucagon secretion, treatment of isolated murine is-
lets with the SSTR2 antagonist CYN154806 does not fully inhibit GLP-
1’s ability to suppress glucagon secretion [583]. Consistent with the
conclusion that GLP-1 suppression of glucagon secretion does not fully
depend on somatostatin, GLP-1 effects on glucagon secretion can be
mimicked by forskolin-induced changes in cAMP. Accordingly, treat-
ment of isolated murine islets with low concentrations of forskolin (1e
10 nM) suppresses glucagon secretion by up to 60%, while high
concentrations of forskolin (0.1e10 mM) stimulate glucagon release
[583]. Notably, the PKA inhibitor 8-Br-Rp-cAMPS attenuates the
inhibitory effect of GLP-1 on glucagon secretion, suggesting that GLP-1
suppression of glucagon secretion is PKA-dependent [583]. In intact
murine islets, blockade of N-type Ca2þ channels withu-conotoxin, but
not L-type Ca2þ channels using nifedipine, abolishes low glucose
(1 mM) stimulation of glucagon secretion and blunts the GLP-1-
mediated inhibitor effects. In summary, these data indicate that
GLP-1 may inhibit a-cell glucagon secretion via PKA-dependent
modulation of N-type Ca2þ channel activity in addition to its para-
crine action via somatostatin [583].
GLP-1 may also inhibit glucagon secretion indirectly via its insulino-
tropic effect on the b-cells. Accordingly, as described in recent review
articles [4,574], GLP-1 stimulates both the d-cells to secrete so-
matostatin and the b-cells to secrete insulin, amylin, zinc, and GABA,
all of which suppress the release of glucagon. In a-cell-derived IN-R1-
G9 cells, insulin inhibits glucagon release via activation of phospha-
tidylinositol 3-kinase (PI3K). Inhibition of PI3K by wortmannin offsets
the ability of insulin to suppress glucagon secretion [587]. In a-cells,
insulin further enhances translocation of GABA-A receptors [588], and
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GABA released from b-cells enhances glucose inhibition of glucagon
secretion [589]. Insulin is co-crystalized with Zn2þ in the secretory
granules of the b-cells [590,591] and Zn2þ is co-secreted with insulin
under conditions of hyperglycemia [592,593]. Zn2þ acts in a paracrine
manner on the a-cells to inhibit the secretion of glucagon [593e595].
Interestingly, disruption of the intrapancreatic infusion of Zn2þ but not
of Zn2þ free insulin accelerates glucagon secretion in rats made
diabetic by STZ, indicating that Zn2þ but not insulin is the main
stimulus underlying the Zn2þ-insulin inhibition of glucagon secretion
[595]. Consistent with this, glucagon secretion is inhibited upon
treatment of a-TC cells with Zn2þ [596]. As demonstrated in isolated
rat a-cells, intact islets and the perfused rat pancreas, Zn2þ inhibits
pyruvate-induced glucagon secretion via opening of KATP channels and
inhibition of a-cell electrical activity [593]. In summary, there is
credible evidence indicating that Zn2þ that is co-secreted with insulin
from the b-cells plays a prominent role in inhibiting release of glucagon
[593e595]. Amylin, which is also co-secreted with insulin, also affects
glucagon release from the a-cells. Amylin dose-dependently sup-
presses arginine-mediated glucagon secretion in rats [597] whereas
pharmacological inhibition of amylin signaling enhances glucagon
secretion [598]. Pramlintide, a synthetic amylin receptor agonist, im-
proves glycemic control in diabetic patients via inhibition of post-
prandial glucagon secretion and inhibition of gastric emptying
[599,600]. Interestingly, amylin does not affect glucagon secretion in
isolated islets [601] nor in the perfused rat pancreas [602,603],
suggesting that amylin regulation of glucagon is not cell autonomous.
Notably, while GLP-1 can potentially affect glucagon secretion via its
stimulatory effect on the b-cells in normal physiological conditions,
GLP-1 also inhibits glucagon release in type 1 diabetes, thus
demonstrating that GLP-1 inhibition of glucagon secretion does not
fully depend on the b-cell secretome [516].
In summary, GLP-1 potently inhibits glucagon secretion. This occurs in
part by a paracrine stimulatory effect on the islets to secrete so-
matostatin, and perhaps insulin, Zn2þ, GABA, and amylin, at elevated
glucose concentrations. GLP-1 likely suppresses glucagon secretion
via endocrine rather than direct mechanisms. Most studies report the
absence [397e399] or very restricted expression of the GLP-1 re-
ceptor in a small subset (10%) of a-cells [395], and treatment of
isolated rat a-cells with GLP-1 enhances rather than inhibits the
release of glucagon [604e606]. GLP-1 may nevertheless also directly
inhibit glucagon secretion, because a-cell-specific GLP-1R KO mice
have elevated non-fasting glucagon levels relative to wildtype controls
and female a-cell-specific GLP-1R KO mice are mildly glucose intol-
erant with increased secretion of glucagon upon peripheral adminis-
tration of glucose [607]. Further supporting a direct GLP-1 inhibition of
glucagon secretion is the fact that such secretion is not prevented in
isolated human islets treated with the insulin receptor antagonist S961
or the somatostatin receptor 2 antagonist CYN154806 [608].

12. CARDIOVASCULAR EFFECTS OF GLP-1

The presence of GLP-1R mRNA in the heart was first demonstrated in
rats [380] and humans [381,609]. Expression was subsequently
confirmed at the protein level [201,610] and histologically using mice
that express GFP under control of the GLP1-R promoter. In these mice
scattered GLP-1R expression was detected in cardiomyocytes of the
atrium but not in the ventricles, and widespread expression was
detected in smooth muscle cells of coronary vessels [395]. As dis-
cussed in a comprehensive review article [611], the anatomical
location of GLP-1R within the cardiovascular system has species-
related differences. In mice, GLP-1R immunoreactivity using multiple

different antisera is found in the cardiomyocytes, endocardium,
microvascular endothelium, and the smooth muscle cells in the cor-
onary arteries [201]. In humans, the presence of GLP-1R has primarily
been demonstrated in the endothelium, the coronary arteries and the
smooth muscle cells [381,612]. Nevertheless, there is little concor-
dance between the available localization data from immunohisto-
chemistry vs. detection of GLP-1R mRNA in situ hybridization. In view
of the many specificity problems associated with antibodies against
the GLP-1 receptor, some of the incongruent findings may also result
from lack of antisera specificity. Using well-characterized antibodies,
expression was noted in the non-human primate and human sinoatrial
node [392], which would be consistent with the effect of GLP-1 on
heart rate. Surprisingly, in one recent study, robust expression of the
GLP-1 receptor mRNA was also reported in human cardiac ventricles,
but the exact localization of the GLP-1R protein could not be deter-
mined [613].
Although best known for its insulinotropic and weight lowering action,
GLP-1R agonism also confers a series of beneficial effects on the
cardiovascular system in rodents. These include an increase of car-
diomyocyte survival via inhibition of apoptosis [614,615], amelioration
of endothelial dysfunction [612,616], improvement of regional, and
global cardiac output following injury and heart failure [614,617e619]
(Figure 7). Reduction of blood pressure is also reported in hypertensive
humans [620]. Prolonged treatment with liraglutide further improves
cardiovascular outcome in patients with T2DM [621]. Of note, GLP-1
improvement of cardiovascular performance is, at least in part, inde-
pendent of its ability to decrease body weight and to improve lipid
metabolism, and GLP-1 may promote its cardiac effects via direct
action at GLP-1R as well as indirect mechanisms independent of
cardiac GLP-1R action [201,611,622].

12.1. Effects of GLP-1 on cardiac performance after cardiac injury
Endothelial dysfunction is a common co-morbidity associated with
insulin resistance and T2DM. Treatment of type-2 diabetic patients that
present coronary artery disease with GLP-1 improves endothelial
function without affecting insulin resistance [612]. Similar findings
have been reported for GLP-1 treatment of type-1 diabetes [623] but
GLP-1 improvement of endothelial function seems to be related to
native GLP-1 and is not observed when GLP-1R agonists are compared
head-to-head with equally glucose lowering medications.
GLP-1 improvement of endothelial function, assessed by flow-
mediated vasodilation, was also demonstrated during a hyperglyce-
mic clamp in patients with T2DM and normoglycemic controls [616]. In
rats, GLP-1 (7-36amide) and, perhaps paradoxically, the GLP-1R
antagonist exendin (9e39), dose-dependently cause relaxation of
the aorta, potentially via elevation of cAMP formation and activation of
KATP channels [624].
In dogs with acute myocardial infarction, infusion of GLP-1 improves
cardiac performance by increasing myocardial glucose uptake and by
enhancing left ventricular function [617]. In the same animal model,
infusion of GLP-1 limited myocardial stunning (ventricular dysfunction
without myocardial necrosis) following reperfusion [618]. These data
are in agreement with non-controlled clinical studies reporting that
72 h of native GLP-1 infusion improved regional and global left ven-
tricular performance in patients with acute myocardial infarction and
severe systolic dysfunction [619]. In mice, 7-day treatment with lir-
aglutide prior to induction of myocardial infarction increases survival
and reduces cardiac injury and infarction size, while improving cardiac
output [614]. In the isolated perfused rat heart, acute GLP-1R agonism
protects from ischemia/reperfusion injury [625,626], an effect that can
be blocked by pretreatment with either exendin (9e39), the cAMP
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inhibitor Rp-cAMP, the PI3 Kinase inhibitor LY294002 or the MAP Ki-
nase inhibitor UO126 [625]. The cardioprotective effect of GLP-1R
agonism seems to be, at least in part, independent of GLP-1-
induced weight loss, dependent on the canonical GLP-1R, and
accompanied by enhanced expression of cardioprotective genes in the
heart, including Akt, GSK3b, PPARD, NRF-2, and HO-1 [614]. Treat-
ment of primary neonatal mouse cardiomyocytes with liraglutide in-
creases cAMP formation and reduces apoptosis, as indicated by
inhibition of TNFa induction of caspase 3 activity [614]. GLP-1R ago-
nism has direct cell autonomous anti-apoptotic effects in the rodent
heart, and GLP-1 reduces hypoxia-induced apoptosis in isolated
neonatal rat cardiomyocytes, and inhibition of PI3K using LY29400 or
MAPK using UO126 blocks the anti-apoptotic effect of GLP-1 [615].
GLP-1 has different effects on left ventricular function and cardiac
contractility under healthy vs. pathological conditions. GLP-1-induced
improvement of left ventricular function has been reported in dogs
with cardiomyopathy [617], in patients with acute myocardial infarction
[619], and in the isolated mouse heart [201]. At least part of the
improvement in cardiac output may be driven by an increase in heart
rate. Other studies, however, report failure of GLP-1 to directly
accelerate contraction in isolated adult rat cardiomyocytes, notably
despite GLP-1 stimulation of cAMP accumulation [627]. Further,
treatment of the healthy isolated rat heart with GLP-1 has been re-
ported to reduce left ventricular contractility despite GLP-1 stimulation
of myocardial glucose uptake [628]. However, as demonstrated in the
same study, GLP-1 enhances recovery of the heart after ischemia and
improves left ventricular function and myocardial glucose uptake
[628]. GLP-1R KO mice have increased baseline left ventricular
developed pressure (LVDP) during perfusion [201]. Mice deficient for
GLP-1R have decreased resting HR and an increased thickness of the
left ventricular wall relative to wildtype controls [201,629], as well as
reduced cardiac contractility when challenged with insulin or
epinephrine [629]. Collectively, these data indicate that GLP-1 im-
proves cardiac performance and output in the post-ischemic heart but
otherwise may decrease cardiac output under non-pathological con-
ditions. Although mice with cardiomyocyte-specific deletion of GLP-1R
have lower basal heart rate (HR), they fully retain the cardioprotective
potential of GLP-1R agonism following left arterial descending (LAD)
coronary artery occlusion [630]. These data suggest that car-
diomyocyte GLP-1R signaling is required for regulation of HR but is
unrelated to the cardioprotective effects of GLP-1R agonism following
cardiac injury.

12.2. Cardiometabolic effects of GLP-1(9-36amide)
Accumulating evidence indicates that some cardiac effects of GLP-1
(7-36amide) are actually mediated via the DPP-4-generated GLP-1
(9-36amide) and its smaller degradation products and, thus, are in-
dependent of GLP-1R signaling. At a dose of 0.3 nmol/L, pretreatment
with GLP-1 (7-36amide) improves recovery of LVDP after ischemia/
reperfusion (I/R) injury in both WT and GLP-1R KO mice [201]. Inter-
estingly, a >10 fold greater dose of exendin-4 is needed relative to
GLP-1 (7-36amide) to achieve a similar effect in WT mice but still with
lower efficacy relative to GLP-1 (7-36amide) in GLP-1R KO mice [201].
The superior cardioprotective effect of GLP-1 (7-36amide) relative to
exendin-4 and the preservation of efficacy of GLP-1 (7-36amide) but
not exendin-4 in GLP-1R KO mice suggest that some of the car-
dioprotective effects of GLP-1 (7-36amide) are independent of GLP-1R
signaling and are potentially mediated via the DPP-4-cleaved GLP-1
metabolite GLP-1 (9-36amide) [201]. Interestingly, when mice are
pretreated with either GLP-1 (7-36amide) or GLP-1 (9-36amide), only
GLP-1 (7-36amide) improves LVDP. However, when administered

during reperfusion, both GLP-1 (7-36amide) and GLP-1 (9-36amide)
improve functional recovery from I/R injury in both WT and GLP-1R KO
mice [201]. Consistent with these data, while exendin-4 but not GLP-1
(9e36) has infarct limiting potential in the isolated rat heart, exendin-4
and GLP-1 (9e36) both improve left ventricular performance during
reperfusion [626]. The infarct-limiting potential of exendin-4 is abol-
ished by treatment with exendin (9e39), thus indicating that this
cardioprotective effect is GLP-1R-dependent [626]. Treatment of iso-
lated mouse cardiomyocytes with either exendin4 or GLP-1 (9-
36amide) increases phosphorylation of AKT and ERK [631], both of
which are known to positively affect cardiomyocyte growth and sur-
vival [632,633].
Collectively, these data indicate that pharmacologic administration of
GLP-1 (9-36amide) may have a functional role to improve recovery
from I/R injury via GLP-1R-independent mechanisms, whereas GLP-1
(7-36amide) but not GLP-1 (9-36amide) affects cardiac contractility via
GLP-1R signaling [201]. Further supporting a cardiometabolic role of
GLP-1 (9-36amide), both GLP-1 (7-36amide) and GLP-1 (9-36amide),
but not exendin-4, promote vasodilation in isolated and ex vivo cultured
mesenteric blood vessels [201], i.e., the vasodilatory effect of GLP-1
(7-36amide) was not different relative to that of GLP-1 (9-36amide)
and was likewise preserved in GLP-1R KO mice [201]. Whether the low
endogenous concentration and the restricted pharmacokinetic action
profile of endogenous GLP-1 metabolites are sufficient to elicit such
effects under physiological circumstances remains questionable.

12.3. Effect of GLP-1 on heart rate (HR) and blood pressure (BP)
GLP-1 effects on HR and BP are species-related. In rats, intravenous
infusion of GLP-1 (7-37amide) or exendin-4 acutely increases HR as
well as systolic, diastolic, and mean arterial BP (Figure 7) [634,635]. In
rats, GLP-1 stimulation of BP peaks around 3e5 min post-injection
and returns to baseline after 25 min [634]. Both central and periph-
eral administration of GLP-1R agonists increase HR and BP in rodents
[636e638], with induction of c-Fos expression in adrenal medullary
catecholamine neurons and activation of tyrosine hydroxylase, the key
enzyme involved in production of norepinephrine, in the brainstem
[638]. These data collectively suggest that some of the acute cardio-
vascular effects of GLP-1 might be due to brain enhancement of
catecholamine outflow and elevation of sympathetic tone. However, in
rats, GLP-1 elevation of BP is preserved upon pretreatment with
reserpine, propanolol or phentolamine, thus indicating that the hy-
pertensive effect of GLP-1 does not exclusively depend on catechol-
amine signaling [634]. However, while the hypertensive effect of GLP-1
is not abolished by inhibition of b-adrenergic signaling [634], exendin-
4 induction of HR is blocked by the b-adrenergic receptor antagonist
propranolol [639], and exendin-4 fails to affect HR in adrenalectomized
rats (as reviewed in [622]). In mice, both acute and chronic central
administration of exendin-4 increases HR and BP with concomitant
decrease in excitatory glutamatergic and inhibitory glycinergic
neurotransmission to preganglionic parasympathetic cardiac vagal
neurons. GLP-1 stimulation of HR and BP is mediated via GLP-1R
signaling because i.v. infusion of exendin (9e39) blocks GLP-1 and
exendin-4 induction of HR and BP [635], and these actions are lost in
Glp1r�/- mice [640]. Collectively, these data suggest that acute GLP-1
effects on HR and BP in normal animals may involve signaling via both,
the sympathetic and parasympathetic nervous systems. Not all rodent
studies report elevated BP in response to GLP-1R agonism, but dose
could be a discriminatory factor. While some studies report increased
BP in rodents upon acute or chronic GLP-1R agonism [634e636,638],
others report decreased BP, especially in experimental models asso-
ciated with the development of hypertension such as salt-sensitive db/

Review

20 MOLECULAR METABOLISM xxx (xxxx) xxx � 2019 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

MOLMET885_proof ■ 2 October 2019 ■ 20/59

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


db mice and Dahl S rats [641,642]. In mice, liraglutide blunts hyper-
tension induced by angiotensin II (Ang-II), an effect that is absent in
GLP-1R KO mice, and is also attenuated upon pretreatment of WT mice
with exendin (9e39) [640].
While in most rodent studies GLP-1 increases HR and BP, i.v. infusion
of GLP-1 (7-36amide) acutely increases HR without affecting mean
arterial BP in conscious calves [643]. Most human studies report a
moderate stimulatory effect of GLP-1 on HR with unchanged or with
reduced BP only in hypertensive individuals [620,622,640,644e649].
Acute infusion of GLP-1 increases heart rate and cardiac output in
healthy human volunteers, potentially via GLP-1-induced vasodilation
in adipose tissue and skeletal muscle [650]. As demonstrated in
healthy human volunteers, GLP-1 infusion acutely increases blood flow
in the subcutaneous abdominal adipose tissue and skeletal muscle
without alterations in splanchnic blood flow [650]. Notably, in contrast
to GIP [651e654], the GLP-1 induced increase in adipose tissue blood
flow is not dependent on postprandial hyperglycemia and hyper-
insulinemia and is observed even under conditions of fasting glucose
and insulin concentrations [650].
GLP-1R agonism has also been demonstrated to reduce BP in people
with T2DM (as reviewed in [611,622,649]). Notably, in healthy human
volunteers, acute administration of GLP-1, GLP-1 (9-36amide), or
exenatide did not affect blood flow in the mesenteric or renal arteries,
excluding splanchnic vasodilatation as a potential mechanism under-
lying the chronic hypotensive effect of GLP-1 [644]. In a recent meta-
analysis of 60 clinical studies, GLP-1R agonists were demonstrated to
reduce diastolic BP with a range of �1.84 to �4.60 mmHg and to
slightly increase heart rate by 2e3.35 beats/min [620]. Relative to
placebo, the reduction of diastolic BP only reached significance for the
treatment of exenatide 10 mg/twice daily (�1.08 mmHg) [620]. These
data align with an integrated analysis of 36 clinical studies that
affirmed cardiovascular safety with up to 4-years’ treatment with
either DPP-4 inhibitors or GLP-1R agonists [655].
The molecular mechanisms underlying GLP-1 improvement of BP are
incompletely understood. Potential mechanisms may include GLP-1-
induced vasodilation and activation of nitric-oxide-dependent
mechanisms [612,640,656]. Indeed, liraglutide stimulates relaxa-
tion of the aorta [640] but GLP-1 might also indirectly lower BP via its
ability to reduce body weight. GLP-1R agonism could also improve BP
via its ability to stimulate sodium excretion (natriuresis) via the
kidneys [657]. The long-term steady-state BP is affected by the
intravascular volume, which is influenced by the vascular tone and
the extracellular fluid volume (ECFV); the ECFV is in turn determined
by the sodium balance. Accordingly, when BP increases, the kidneys
respond by increasing natriuresis to decrease BP via reduction of the
ECFV [92,658,659]. GLP-1R agonists acutely stimulate natriuresis in
rodents and may also do so in humans, lowering BP, potentially also
via reduction of the ECFV [641,642,660,661]. In mice, liraglutide
reduces angiotensin II (Ang-II) stimulation of systolic and diastolic BP,
an effect that is absent GLP-1R KO mice or by pretreatment with
exendin (9e39) or the natriuretic peptide receptor antagonist anantin
[640]. In WT mice and in isolated atrial cardiomyocytes, liraglutide
stimulates the production and secretion of atrial natriuretic peptide
(ANP), and liraglutide fails to induce natriuresis and to lower BP in
ANP KO mice [640]. Liraglutide stimulation of cardiac ANP secretion
is PKA independent but mediated by Epac2 in a cAMP and PLC-
dependent manner [640]. However, in humans there is no consis-
tent effect of GLP-1 on ANP secretion whereas angiotensin II is
generally lowered [657,662e664]. In summary, GLP-1R agonism
improves BP through stimulation of natriuresis via Epac2-dependent
stimulation of cardiac ANP secretion [640]. Nevertheless, the

majority of hypertensive human subjects treated with liraglutide do
not exhibit an increase in circulating ANP [662].

13. GLP-1 EFFECTS ON FOOD INTAKE AND BODY WEIGHT

One of the most frequently described extrapancreatic effects of
pharmacokinetically-optimized GLP-1R analogs is their ability to lower
body weight via centrally regulated inhibition of food intake (Figure 7).
Suppression of food intake by GLP-1R agonism has been demon-
strated in numerous species including mice [465e467,665,666], rats
[667,668], birds [669,670], pigs [671,672], non-human primates
[673,674], and humans [675e678]. The anorexigenic effect of GLP-1R
agonism has been demonstrated in numerous clinical studies and fMRI
analysis support that GLP-1 inhibition of food intake is centrally
mediated in healthy individuals and patients with type-2 diabetes
[679e684].

13.1. Effect of peripheral administration of GLP-1 analogs on food
intake
Peripheral administration of GLP-1 analogs decreases body weight via
suppression of food intake [465e467,665,685]. Depending on the
molecule (native GLP-1 or a longer-acting GLP-1 analog) and the route
of administration, GLP-1 and its analogs seem to engage different
signaling pathways to either directly or indirectly transmit the signal to
reduce food intake to the CNS.
Central GLP-1R appear to be necessary for the anorectic effect of
peripherally administered GLP-1R agonists in rodents [686e688].
When administered s.c., liraglutide fails to inhibit eating in mice
possessing a CNS-specific deletion of GLP-1R [688]. Another report
indicates that i.v. infusion of liraglutide inhibits eating in rats by directly
activating hypothalamic Pomc/Cart neurons in the ARC, without acti-
vating GLP-1-producing neurons in the hindbrain, and independent of
GLP-1R signaling in vagal afferents, the area postrema (AP) and the
PVN [686]. In rats, central (i.c.v.) administration of exendin (9e39) was
also sufficient to attenuate the anorexigenic effect of i.p. injected lir-
aglutide and exendin-4 [687], and bilateral neurochemical lesions of
the lateral parabrachial nucleus (IPBN) with ibotenic acid blunted the
anorexigenic effect of peripherally administered exendin-4 [689].
When applied either s.c. or i.p., exendin-4 and liraglutide induced
acute neuronal activation (measured by activation of cFos) in PVN, AP,
and NTS [686,690]. Interestingly, the short-term anorexigenic effects
of i.p. injected low-dose liraglutide and exendin-4 were also attenuated
by subdiaphragmatic vagal deafferentation [687,691], but longer-term
effects of these compounds on food intake did not depend on intact
vagal afferents [691]. All of these findings are consistent with the
concept that GLP-1 receptor agonists inhibit eating and reduce body
weight primarily by acting directly in the brain, and that various brain
areas are involved in mediating the eating-inhibitory effects of GLP-1
receptor agonists. This presumably reflects the ability of long-acting
GLP-1 analogs to enter the brain at areas with an incomplete BBB,
such as the median eminence.
While these data collectively emphasize the importance of neuronal
GLP-1R for the food intake inhibition by long-acting GLP-1 analogs, it is
unclear whether and to what extend this accounts for physiological
doses of intestinal-derived native GLP-1. When infused into the hepatic
portal vein, GLP-1 (7-36amide) increased cFos expression in the NTS,
the AP, and the central nucleus of the amygdala, but not in the hy-
pothalamic ARC or PVN [692], i.e., native GLP-1 appears to induce an
activation pattern in the brain that is different from the pattern induced
by long-acting GLP-1 receptor agonists. While peripherally adminis-
tered GLP-1 seemingly crosses the blood brain barrier (BBB) via simple
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diffusion, the half-life of GLP-1 is less than 2 min, leading to
disagreement regarding whether peripherally derived GLP-1 is what
activates CNS GLP-1R under physiological conditions.
In rats, i.v. administration of GLP-1 at high physiological doses stim-
ulates vagal afferents, and this is blocked by pretreatment with
exendin (9e39) [693]. While this activation appears to be involved in
the insulinotropic and gastric emptying inhibiting effects of exogenous
GLP-1 [693], it does not appear to be crucial for the effect of i.v.
administered native GLP-1 on eating [694], because GLP-1 infusions
into the hepatic portal vein did not lose their potency to reduce food
intake after subdiaphragmatic vagal deafferentation in rats [692,694].
Interestingly, however, the food intake inhibition following i.p.
administration of a supposedly “physiological” dose of GLP-1 (7-
36amide) depends on the integrity of abdominal vagal afferents [694],
indicating that peripheral GLP-1 can inhibit eating via at least two partly
separate pathways. Consistent with a role of vagal afferents and vagal
afferent GLP-1 receptors in the eating-inhibitory effect of peripheral
endogenous GLP-1, virus-mediated knockdown of GLP-1R in vagal
afferent neurons increased meal size, accelerated gastric emptying,
and reduced prandial insulin secretion in rats, while not affecting 24 h
food intake or body weight [518]. The latter finding matches the results
obtained in Phox2b-Cre GLP-1 receptor KO mice, lacking GLP-1 re-
ceptors in the autonomic nervous system, which have normal body
mass and composition in response to both chow and HFD [688], yet
exhibit partial attenuation of the anorectic and weight loss effects of
peripherally administered GLP-1R agonists [520]. In humans, the effect
of i.v. GLP-1 infusion on food intake was lost after truncal vagotomy
[695], indicating that vagal afferents are involved in mediating the
effects of circulating native GLP-1 on appetite. In rats, on the other
hand, lesions of the AP or administration of exendin (9e39) into the 4th
ventricle blocked the food intake inhibition by GLP-1 infused into the
hepatic portal vein [261], suggesting that high concentrations of
circulating GLP-1 act on the hindbrain to reduce food intake. In one
study GLP-1 infused into the vena cava or hepatic portal vein of rats
had similar effects on food intake [696], whereas in another study in
rats GLP-1 infusions into the jugular vein inhibited food intake more
potently than infusions into the hepatic portal vein [697]. These find-
ings argue against a hepatic portal site of action of GLP-1 to inhibit
eating, and further emphasize that the route of administration is an
important consideration when analyzing food intake inhibition by GLP-
1R agonism.
The data summarized above were collected in mice, rats, and humans;
in addition to varying experimental conditions, species differences may
account for some of the discrepancies observed. Nevertheless,
collectively these data indicate that vagal afferents are involved in
mediating the satiating effects of endogenous peripheral GLP-1 or
exogenously administered GLP-1 and the acute inhibition of food intake
in response to peripheral GLP-1 receptor agonists under certain con-
ditions. However, vagal afferents and vagal afferent GLP-1 receptors
are presumably less important for the effects of peripheral GLP-1 on
body mass.

13.2. Effect of central administration of GLP-1R analogs on food
intake
The acute anorectic effect of centrally administered GLP-1 was
described simultaneously 1996 by Steve Bloom’s group [668] and by
Mads Tang-Christensen et al. [92] and was confirmed by others
[667,698]. In mice and rats, the short-term inhibition of food intake
induced by i.c.v. administered GLP-1R agonists is dose-dependent,
can be blocked by pretreatment with exendin (9e39) [668,698] and
is absent in GLP-1R KO mice [690]. Inhibition of food intake by centrally

administered GLP-1R analogs is accompanied by increased cFos
neuronal activity in the PVN, amygdala, NTS, AP, lateral parabrachial
nucleus, and the ARC [668,696,698]. These data align with the
expression of GLP-1R throughout the CNS [395,396]. Furthermore, cell
bodies that are immunoreactive to GLP-1 antisera are detected in the
NTS, and GLP-1 immunoreactive nerve fibers are widely distributed
throughout the brain with highest density in the hypothalamus, thal-
amus and septal regions whereas the lowest density is in the cortex
and hindbrain [86,698]. Supporting a role of the NTS in mediating GLP-
1’s effects on food intake, adeno-associated virus (AAV) mediated
knock-down of GLP-1R in the NTS results in higher food intake and
meal size [699]. Chronic blockade of GLP-1R with intra 3rd ventricular
infusion of exendin (9e39) increases food intake and fat mass [700].
Direct intraparenchymal delivery of low, ventricle subthreshold doses
of GLP1R agonists to GLP1R expressing nuclei throughout the brain,
including e.g., NTS, lPBN, ventral tegmental area (VTA), PVH, PVT,
nucleus accumbens (NAcc), ventral hippocampus, and lateral septum
reduced food intake via reductions in meal size. Consistent with this,
delivery of exendin (9e39) to these sites increases meal size and food
intake [701e705].
Hindbrain GLP-1R activation enhances phosphorylation of PKA and
MAPK while decreasing the activity of AMPK in the NTS, and inhibition
of PKA/MAPK activity by administration of Rp-cAMP or UO126 atten-
uates food intake inhibition of exendin-4 administered into the 4th
ventricle [706]. These data suggest that hindbrain GLP-1R activation
suppresses food intake via PKA/MAPK-induced inhibition of AMPK.
Diphtheria toxin-induced ablation of GLP-1 producing neurons in the
NTS had no effect on either ad libitum food intake or glucose meta-
bolism [90]. Nevertheless, in rats, activation of hindbrain GLP-1R via
i.c.v. administration of exendin-4 into the 4th ventricle reduces food
intake via reduction of meal frequency; i.e., via increased satiety [706].
Intra 4th-ventricular administration of exendin (9e39) or lesions of the
AP also block food intake inhibition by GLP-1 infused into the hepatic
portal vein (HPV) [261], suggesting that high levels of circulating GLP-1
inhibit eating at least in part by acting on the hindbrain.

13.3. Molecular mechanisms underlying food intake inhibition by
GLP-1
The molecular underpinnings regulating GLP-1 inhibition of food intake
and body weight loss are complex. Undoubtedly, brain GLP-1R
signaling is crucial for the anorexigenic effect of exogenously admin-
istered long-acting GLP-1R agonists, as demonstrated by failure of
liraglutide to suppress food intake in CNS-specific GLP-1R KO mice
[688]. Consistent with this, i.c.v. administration of exendin (9e39) is
sufficient to attenuate the anorexigenic effect of peripherally admin-
istered liraglutide and exendin-4 [687]. However, CNS-specific GLP-1R
KO mice have normal body mass and composition whether on a chow
or HFD [688], suggesting that these receptors may be necessary for
the pharmacological response to GLP-1 but not the physiological
control of body weight. However, data obtained in KO animals generally
have to be regarded with caution since compensatory mechanisms,
which limit interpretations and affect study outcomes, might develop.
Depending on the route of administration (and the GLP-1R agonist
used), peripherally administered GLP-1 analogs seem either to act
directly in the hypothalamus and hindbrain, both areas with incomplete
BBB, or else on vagal afferents to transmit the signal to the hindbrain
which then projects to other key feeding areas in the brain. Hindbrain
GLP-1R activation enhances phosphorylation of PKA and MAPK while
decreasing the activity of AMPK in the NTS, and inhibition of PKA/MAPK
activity by administration of Rp-cAMP or UO126 attenuates food intake
inhibition of exendin-4 administered into the 4th ventricle [706]. These
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data suggest that hindbrain GLP-1R activation suppresses food intake
via PKA/MAPK-induced inhibition of AMPK.
The anorexigenic effect of GLP-1R agonism involves the glucose-
dependent silencing of central AMPK action. Activity of AMPK is
increased under conditions of fasting [707] and is decreased under
conditions of enhanced glucose utilization [708e710]. Consistent with
AMPK’s role as a stress- and nutrient-responsive protein kinase,
pharmacological, physiological (e.g. fasting-induced), or genetic acti-
vation of AMPK stimulates food intake whereas AMPK inhibition de-
creases food consumption [707,711]. Central administration of GLP-1
reduces the activity (phosphorylation) of AMPK [712,713] and treat-
ment of mouse hypothalamic GT1-7 cells with exendin-4 stimulates
glycolysis and decreases phosphorylation of AMPK [714]. Pharmaco-
logical activation of AMPK by administration of 5-aminoimidazole-4-
carboxamide-1-b-Deribofuranoside (AICAR) in either the 3rd [714]
or the 4th ventricle [706] attenuates the anorectic effect of exendin-4
injected into the same ventricles. Consistent with these data, i.c.v.
administration of the glycolysis inhibitor 2-deoxyglucose (2-DG) like-
wise increases activity of AMPK and blunts food intake suppression by
i.c.v.-injected exendin-4 [714]. In summary, compelling evidence in-
dicates that the anorexigenic effect of central GLP-1 receptor activation
is partially mediated by central stimulation of glycolysis and
concomitant silencing of AMPK activity. Accordingly, pharmacological
activation of AMPK in the VMH blunts food intake suppression by i.c.v.
exendin-4 [714,715] and attenuates central GLP-1 effects on brown
and inguinal white adipose tissue [666].
The anorexigenic effect of GLP-1 seems to be transduced via GLP-1R
signaling in several areas of the brain, including both hypothalamic
nuclei and the hindbrain. Microinjection of exendin-4 into the NTS
reduces intake of palatable high-fat diet and inhibits food reward
behavior [716], and hindbrain inhibition of GLP-1R via administration of
exendin (9e39) into the 4th ventricle increases food intake [717]. The
anorexigenic and weight-lowering effects of liraglutide are blunted
upon genetic ablation of GLP-1R in glutamatergic neurons, yet fully
preserved when GLP-1R is deleted in GABAergic neurons [718]. Pe-
ripheral administration of GLP-1 (7-36amide) enhances neuronal ac-
tivity in the VMH [719,720], and direct administration of GLP-1 into the
LH, VMH, or DMH of rats acutely decreases food intake [721]. Similar
findings were reported in rats that received direct infusion of GLP-1 (7-
36amide) into the PVN [722,723]. In rats, liraglutide decreases food
intake when directly injected into the ARC, LHA, or PVN while direct
administration into the VMH decreases body weight without affecting
food intake, but increases the expression of Ucp1 in the brown and
inguinal white adipose tissue [666]. The acute effects of exendin-4 to
reduce food intake and to improve glucose handling are preserved
upon knockdown of GLP-1R in the VMH [715], indicating that the ef-
fects of central GLP-1R activation on eating and BAT thermogenesis
are mediated by at least partially separate brain areas and circuitries.

13.4. GLP-1 effects on visceral illness
Inhibition of food intake can be due to other factors than satiety,
including gastric discomfort, e.g., gastroparesis, associated with
visceral illness and stress. Anorexia associated with visceral illness
can be chemically-induced by administration of lithium chloride (LiCl),
a substance known to promote nausea and emesis in humans [724e
726] and taste avoidance conditioning and pica in rodents, that do not
vomit [727]. Pica is the measure of the amount of kaolin clay
consumed in response to treatments that trigger nausea and vomiting
in humans and is a broadly accepted proxy of visceral malaise in non-
vomiting rats. Taste avoidance conditioning describes the reduction in
the intake of novel taste or food that has been associated with a

treatment that induces negative consequences e.g., including the ef-
fects of peripheral pain, lactose malabsorption or the effects LiCl [728].
In rats, peripheral administration of LiCl induces cFos neuronal activity
in the IPBN, the AP and the NTS [726,729] with remarkable overlap in
the cFos activity pattern induced by centrally administered GLP-1
[726]. Apart from inducing cFos activity in the same brain areas
[696,726,730], LiCl and central GLP-1R agonism both decrease lo-
comotor activity [668,731], slow GI motility and gastric emptying
[573,732], reduce body temperature [732,733], and induce adverse
gastrointestinal effects including nausea, emesis, and taste avoidance
[696,724e726,734e737]. Selective ablation of NTS PPG neurons
prevents stress-induced hyperphagia in mice but has no effect on
long-term ad libitum food intake, body weight, or glucose tolerance
[90]. These data suggest that NTS PPG neurons are not essential for
long-term regulation of food intake but are required for the short-term
hypophagia in response to stress [738,739].
Collectively, these studies highlight that, in some species, GLP-1 and
LiCl might engage similar central signaling mechanisms and suggest
that central GLP-1s anorexigenic effect might be influenced by aversive
pathways and gastric discomfort. However, there are other data that
would challenge the simple explanation that the reduction in feeding
and body weight resulting from CNS GLP1R agonism is simply
explained by inducing an aversive visceral state. Targeted agonist
delivery to CNS GLP1-R expressing sites, PVT, NTS, VTA, NAcc, or PBN
reduces food intake without the expression of pica, a proxy of visceral
illness [704,716,740,741]. In addition, Jelsing et al. report that food
intake inhibition by liraglutide is observed in the absence of reduced
gastric emptying effects that some have linked to visceral malaise
[742]. Importantly, both van Bloomendaal et al. [682] and ten Kulve
et al. [743] provide data to support the hypothesis that food intake
reduction after GLP-1 receptor agonism is mediated by actions on
appetite- and reward-related areas of the human brain, an interpre-
tation also supported by rodent studies [704,716,740,741].

13.5. GLP-1 effects on reward behavior
Central GLP-1 regulation of food intake is not restricted to GLP-1R
signaling in the hypothalamus and hindbrain and is not limited to
modulation of homeostatic feeding, i.e. food intake to maintain energy
homeostasis. GLP-1 also affects non-hunger related (hedonic) feeding
by targeting brain areas involved in reward, motivation and addiction,
such as the VTA, NAcc, lateral septum [701,741,744,745], and PVT
[704]. These mesolimbic regions express GLP-1R [347] and receive
projections from PPG neurons in the NTS [354,741,744]. Peripheral
administration of exendin-4 [691] or direct administration of GLP-1 into
the core of the NAcc [744] increases cFos expression in this region,
and direct activation of NAcc GLP-1R reduces food intake while its
direct inhibition by exendin (9e39) induces hyperphagia [744]. Food
intake inhibition by NAcc GLP-1R is unrelated to taste avoidance [744]
and does not induce pica [701,741]. Administration of exendin-4 into
the shell of the NAcc decreases sucrose reward behavior in the pro-
gressive ratio (PR) operant conditioning test [701]. Consistent with this,
GLP-1R agonism decreases a variety of reward behaviors in rodents,
including the motivation to lever press for food reward in an operant
conditioning test [746], alcohol intake [747,748], alcohol seeking
behavior [747], amphetamine-induced conditioned place preference
(Amp-CPP) [748], and hedonic feeding [748]. The inhibitory effect of
GLP-1R analogs on reward behaviors is blunted in mice with CNS-
specific deletion of GLP-1R [748]. Several lines of evidence indicate
that NAcc GLP-1R activation decreases food intake by reducing food
palatability. In satiated rats given a choice between chow and high-fat
diet (HFD), exendin-4 preferentially reduces consumption of the more
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palatable HFD [741]. In rats, intra-NAcc injection of exendin (9e39)
increases the size of a sucrose meal and accelerates the licking fre-
quency during the first meal, an indicator of increased palatability
[749]. In summary, GLP-1R agonism decreases homeostatic and he-
donic feeding, and modulates food intake not only via the hypothala-
mus and the hindbrain but also via signaling in the mesolimbic system,
in which GLP-1R activation affects reward behavior and palatability.

13.6. GLP-1 transport across the blood brain barrier (BBB)
Several lines of evidence indicate that peripherally administered GLP-1
can cross the blood brain barrier (BBB). Studies using a stabilized
radiolabeled (Ser8)GLP-1 revealed rapid uptake into the brain after
intravenous (i.v.) administration without self-inhibition when chal-
lenged with increased doses of unlabeled (Ser8)GLP-1 or upon inhi-
bition of brain GLP-1 influx upon pretreatment with exendin (9e39).
Small peptide GLP-1R analogs including liraglutide, lixisenatide, and
exendin-4 have all been demonstrated to cross the BBB upon pe-
ripheral administration [750,751], and HPLC analysis confirmed that
most of the peripherally administered exendin-4 reaches the brain
intact [751,752]. While these studies suggest that GLP-1 influx into the
brain might be a GLP-1R-independent process with passive diffusion of
GLP-1 through the BBB [750e752], other studies suggest that uptake
of liraglutide into the brain is GLP-1R-dependent [686,753]. None-
theless, brain regions with incomplete BBB, such as the subfornical
region and the AP, are main targets of peripherally injected 125I-
labeled GLP-1 [754].

14. GLP-1 EFFECTS ON WATER INTAKE

GLP-1 inhibition of water intake was first reported by Mads Tang-
Christensen in 1996 [92] and was later confirmed by others [755e
760]. GLP-1 inhibition of water consumption is independent of food
intake [758] and is blocked by pretreatment with exendin (9e39) [92].
In rats, inhibition of drinking by GLP-1 (7e36 amide) is dose-
dependent and occurs within 30 min following its central (i.c.v.) or
peripheral (i.p.) administration [92]. In one study in healthy humans,
i.v. infusion of GLP-1 decreased water consumption by 36% in
response to i.v. infusion of hypertonic saline (5% NaCl) [755]. Pe-
ripheral but not central administration of GLP-1 fails to inhibit angio-
tensin (ANG) II-induced drinking in rats that have been treated with
monosodium glutamate (MSG) to induce damage of the ARC and the
sensory circumventricular organs, suggesting that peripherally
administered GLP-1 effects drinking behavior via CNS-dependent
mechanisms [760].
GLP-1 affects renal function by decreasing water intake as well as by
stimulating the excretion of urine and sodium (Figure 7). The natriuretic
and diuretic effect of GLP-1R agonism was first shown in 1996 [92]
and was subsequently confirmed in rodents [642,660,761] and in
healthy, obese, and type-2 diabetic humans [661,663]. While the acute
natriuretic effect of GLP-1 has been solidly confirmed in humans
[762e764], 12 wk treatment of T2DM patients with liraglutide or the
DPP-4 inhibitor sitagliptin had no effect on markers of renal function,
including glomerular filtration rate, renal plasma flow, albumin-to-
creatine ratio, and excretion of sodium, potassium, and urea [765].
These data suggest that that GLP-1’s effects on renal function might be
transient and vanish upon more chronic treatment. In one study in
T2DM patients, the natriuretic effect of liraglutide persisted after 3 wk
treatment [662].
In rats, GLP-1 induced natriuresis and diuresis is accompanied by
increased renal plasma flow and glomerular filtration rate [660,761].
Denervation of the kidney results in failure of GLP-1 to increase

glomerular filtration rate and decreases the natriuretic and diuretic
effect of GLP-1 [761]. These data suggest that the natriuretic and
diuretic effect of GLP-1 might be due to inhibition of sodium reab-
sorption in the proximal tubule and emphasize that GLP-1 requires
intact renal innervation to increase glomerular filtration. Studies in
rodents and humans indicate that GLP-1R is expressed in the renal
vasculature [392,766e768]. However, treatment of isolated porcine
proximal tubular cells with GLP-1 reduced sodium re-absorption [768].
Consistent with this, GLP-1, exendin-4, and the DPP-4 inhibitor sita-
gliptin reduced proximal tubular sodium reabsorption in rats
[660,761,769,770] and humans [663]. In the renal proximal tubule,
GLP-1 reduced Naþ/Hþ exchanger isoform 3 (NHE3)-mediated bi-
carbonate reabsorption [660]. Consistent with this, exendin-4
decreased NHE3-mediated sodium-dependent pH recovery in
porcine kidney LLC-PK1 cells [771]. Inhibition of NHE3 activity by GLP-
1R agonism seems to be mediated via cAMP activation of PKA, which
phosphorylates NHE3 at its Ser552 and Ser605 residues
[660,771,772]. In rodents [660,761] and humans [663,763], GLP-1R
agonism increases renal lithium clearance, a marker for proximal
tubular sodium reabsorption. These data suggest that the diuretic and
natriuretic effects of GLP-1 include changes in renal hemodynamics
and reduced sodium reabsorption due to PKA-dependent down-
regulation of NHE3 activity in the renal proximal tubule. GLP-1 might
also affect kidney function via its cardiovascular effects. In rats,
infusion of GLP-1 increases renal blood flow and the glomerular
filtration rate [660,761], and this effect is potentially mediated via GLP-
1’s ability to increase vasodilation of the afferent renal arteriole. In
wildtype but not GLP-1R KO mice, liraglutide stimulates the secretion
of natriuretic peptide (ANP) from the atrial cardiomyocytes and lir-
aglutide fails to affect natriuresis and vasorelaxation in mice deficient
for ANP [640].

15. GLP-1 EFFECTS ON ENERGY EXPENDITURE

A role of endogenous GLP-1R signaling in the control of energy
expenditure was inferred from studying mice with congenital GLP-1R
deficiency. Relative to wildtype controls, lean chow-fed GLP-1R KO
mice do not have alterations in energy expenditure, neither when kept
at a standard room temperature nor when challenged with moderate
cold exposure [773]. However, relative to wildtype controls, diet-
induced obese GLP-1R KO mice exhibit reduced energy expenditure
at standard ambient room temperature but not at temperatures fa-
voring thermoneutrality [774]. Because thermoneutrality minimizes the
contribution of non-shivering thermogenesis to whole-body energy
expenditure and because non-shivering thermogenesis requires
functional brown adipose tissue (BAT) [775], these data imply a
contribution of endogenous GLP-1R signaling to the control of energy
expenditure, at least in diet-induced obese mice, by regulating BAT
activity. This contribution requires GLP-1R signaling in the brain; i.e.,
the brain plays a critical role in the control of BAT activity [776] and
GLP-1R is expressed in the brain, including in nuclei involved in the
control of BAT [347,389]. In keeping with this, site-specific disruption
of GLP-1R on neurons of the DMH of rats results in significant body
weight gain paralleled by a reduction in energy expenditure and BAT
heat production [777]. The DMH is part of the neuronal network
involved in the control of BAT thermogenesis [776] and receives
innervation from pre-proglucagon-expressing neurons of the hindbrain
[778]. A priori, this positions those neurons as potential contributors to
the neural circuits controlling energy expenditure by regulating BAT
thermogenesis in rodents. Intriguingly, emerging data involving gain or
loss of function from those cells in mice argue against such a
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contribution. Thus, diphtheria toxin-mediated ablation of those neurons
[90] does not result in long-term changes on food intake or body
weight, which suggests a minimal impact on energy expenditure.
Conversely, acute chemogenetic activation of those neurons fails to
increase, and rather transiently reduces, energy expenditure [357].
Disregarding differences due to experimental conditions including
acute versus chronic intervention or animal species or strains, these
data suggest that endogenous GLP-1R signaling in the brain may play
a constitutive role in the homeostatic control of BAT thermogenesis,
beyond its physiological modulation by brain-derived GLP-1.
However, this does not preclude the possibility that exogenous
administration of GLP-1 may regulate energy expenditure by acting on
brain GLP-1R. In fact, an early report in rats described an increase in
energy expenditure during the first hours of the dark cycle following
i.c.v. administration of low doses of GLP-1 (7-37amide) [779].
In mice, acute central (i.c.v.) but not peripheral administration of GLP-1
increased brown adipose tissue (BAT) temperature and increased the
activity of sympathetic fibers that innervate the inguinal BAT [773].
Consistent with these data, central administration of the GLP-1R ag-
onists liraglutide and exendin-4 increases energy expenditure and BAT
thermogenesis through mechanisms that include AMPK signaling in
the mediobasal hypothalamus [666]. Taken together, these studies
suggest that pharmacological activation of brain GLP-1R signaling
increases energy expenditure in mice.
Peripheral administration of GLP-1R agonists has led to variable
results with respect to energy expenditure. One study in rats found
an increase of energy expenditure upon i.v. infusion of GLP-1, and
with even greater potency relative to centrally administered GLP-1
[780]. These data are consistent with the demonstration that i.v. but
not i.p. administered GLP-1 inhibits eating via activation of hind-
brain GLP-1 receptors [261,694] and suggests a similar mechanism
for i.v. GLP-1-stimulation of energy expenditure. In contrast,
another study in rats reported an acute decrease of energy
expenditure associated with a decrease in interscapular skin tem-
perature following i.p. administration of exendin-4 and this effect
was attenuated when GLP-1R was knocked down on vagal afferent
neurons [781]. These data are consistent with reports that the
anorexigenic effect of i.p. administered GLP-1 depends on vagal
afferents [692,694] and thus suggests a similar mechanism for i.p.
GLP-1 effects on energy expenditure. Caudal brainstem delivery of
Cocaine- and amphetamine-regulated transcript (CART) induces
hypothermia, and this effect is blocked by pretreatment with
exendin (9e39) [782]. Several studies in mice [465,467,685,774]
and humans [783e787] have failed to detect changes in energy
expenditure following chronic or acute peripheral treatment with
different GLP-1R agonists. One human study did report an acute
decrease of diet-induced thermogenesis due to lower carbohydrate
oxidation following i.v. infusion of GLP-1 [788].
In summary, the experimental evidence supports a contribution of
brain-GLP-1R signaling in the control of energy expenditure, at least in
rodents, via control of BAT activity. The frequently reported absence of
peripherally administered GLP-1 mimetics to regulate energy expen-
diture in mice and humans has several implications. First, the BBB
might limit access to brain areas where GLP-1R could potentially
mediate effects on energy expenditure; second, the underlying GLP-1
analog, the feeding status of the test subject, and the route of
administration are important considerations when analyzing GLP-1
effects on energy expenditure, and, third, rodents may be uniquely
sensitive to mechanisms activating energy expenditure through the
sympathetic nervous system.

16. GLP-1 EFFECTS ON GASTRIC EMPTYING

In addition to its direct and vagally mediated insulinotropic action on b-
cells, GLP-1 also improves postprandial glucose handling by inhibition
of gastric emptying, decelerating the rate at which glucose is absorbed
into the circulation (Figure 7) [573,789e791]. Inhibition of gastric
motility and gastric acid secretion following treatment with GLP-1R
agonists has been demonstrated in mice [792], rats [793e795],
dogs [796e798], pigs [799,800], and humans [573,789e
791,799,801e805]. In rats, inhibition of gastric emptying occurs af-
ter peripheral or central administration of GLP-1 [795], and this effect
is mediated via hindbrain GLP-1R signaling [806]. Vagal afferent GLP-1
receptor knockdown accelerates gastric emptying [518] and vagal
afferent denervation [795] or peripheral administration of exendin (9e
39) [794,795] blocks the effect of centrally or peripherally adminis-
tered GLP-1 on gastric emptying. These data are consistent with the
failure of GLP-1 to inhibit gastric acid secretion in vagotomized human
subjects [807] as well as the failure of GLP-1 to inhibit vagally-induced
motility in the isolated perfused pig antrum [800]. These data suggest
that GLP-1-mediated inhibition of gastric motility includes vagal af-
ferents, as well as GLP-1R dependency in the periphery and the brain
[795]. Inhibition of adrenergic signaling through combined adminis-
tration of phentolamine and propanolol abolishes the inhibitory effect of
GLP-1 on gastric motility, suggesting that GLP-1 inhibits gastric
emptying via adrenergic signaling [794]. In fasted rats, co-
administration of GLP-1 and GLP-2 leads to a greater inhibition of
small bowel motility relative to either monotherapy [793]. Exendin-4
fails to affect gastric emptying in GLP-1R KO mice [792]. In healthy
human volunteers, intravenous GLP-1 decelerates gastric emptying
after the first meal to a greater extent than after a second meal,
indicating that GLP-1 inhibition of gastric emptying undergoes rapid
desensitization [803]. In overweight humans, liraglutide 3 mg solidly
inhibits gastric emptying after 5wk of treatment, but the efficacy
markedly decreases after 16wk of treatment, yet with still significant
effect relative to placebo treated controls [808]. In rats, liraglutide- but
not exendin-4-induced inhibition of gastric emptying is markedly
diminished after 14 wk of treatment [742]. Because gastric emptying is
a prerequisite for glycemic rises after meals, which in turn trigger
insulin secretion, deceleration of gastric emptying in response to
exogenous GLP-1 leads to lesser post-meal glucose excursions and
reduced insulin secretory responses [809]. This has led to doubts
about the importance of an incretin role for pharmacological GLP-1
administration, because incretin hormones should lead to a net in-
crease in post-nutrient insulin secretory responses [810].

17. GLP-1 EFFECTS ON THE HYPOTHALAMIC PITUITARY
ADRENAL (HPA) AXIS

Neurons of the NTS are important in the regulation of the
hypothalamus-pituitary-adrenal (HPA) axis in response to stress [811],
and evidence indicates that brain GLP-1R signaling plays an integral
role in the acute CNS response to stress and aversive stimuli [811].
Preproglucagon-positive neurons of the NTS have dense projections to
other brain areas, including the hypothalamic PVN, where they
innervate CRH-releasing neurons [812]. GLP-1R is expressed in neu-
rons of the PVN [347] that co-localize with CRH [813]. Central
administration of GLP-1 in rats and mice stimulates the HPA axis and
increases secretion of corticosterone, and this is accompanied by
increased cFOS immunoreactivity in CRH-positive neurons in the PVN
[668,698,814]. In rodents and humans, peripherally administered
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GLP-1R agonists transiently stimulate the HPA axis and increase
circulating levels of corticosterone, aldosterone, and ACTH [815e817].
Peripheral administration of exendin-4 or liraglutide increase circu-
lating corticosterone in mice under basal conditions and also during a
forced swimming test [818]. Mice with PVN-selective deletion of GLP-
1R (using Sim1 cre) have impaired stress-induced HPA axis activation,
and this is further accompanied by protection from stress-induced
weight loss, reduced stress-induced cardiovascular endpoints and
reduced anxiety-like behavior [813]. In rats, combined administration
of dexamethasone and exendin-4 leads to a greater anorexigenic effect
and greater weight loss relative to treatment with exendin-4 alone
[819]. Similar results were reported in mice treated with GLP-1/
dexamethasone, an unimolecular peptide-nuclear hormone conjugate
designed to optimize dexamethasone delivery into GLP-1R positive
cells [820]. Ablation of hindbrain catecholamine neurons using anti-
dopamine-b-hydroxylase-saporin (DSAP) blunts the ability of exendin-
4 to increase corticosterone secretion but interestingly potentiates the
food intake inhibition by exendin-4 [819]. These data suggest that
activation of the HPA axis antagonizes the satiation effect of GLP-1R
agonism [819].

18. GLP-1 EFFECTS ON LEARNING, MEMORY AND
NEUROPROTECTION

GLP-1R expression has also been demonstrated in the rat [347,821]
and mouse [822] hippocampus, a brain region implicated in spatial
learning and memory [823,824]. In rats, central GLP-1R agonism
improves several aspects of learning and memory, as demonstrated by
improved performance in the Morris water maze test and by enhanced
latency in the passive avoidance test [417]. GLP-1’s improvement of
learning and memory can be blocked by pretreatment with exendin
(9e39), and is absent in mice deficient for the GLP-1 receptor [417].
Targeted hippocampal restoration of GLP-1R expression in otherwise
GLP-1R-deficient mice using AAV-mediated gene transfer reverses
GLP-1 improvement of learning and memory in the passive avoidance
test [417].
Central GLP-1R signaling has also been demonstrated to have neu-
roprotective effects. GLP-1 and exendin-4 enhance differentiation and
neurite outgrowth in rat pheochromocytoma (PC12) cells and in human
neuroblastoma SK-N-SH cells [825]. The neuroprotective effect of
GLP-1R agonism is similar to that conferred by nerve growth factor
(NGF) and is blocked when PC12 cells are co-incubated with exendin
(9e39) [825]. Both GLP-1 and exendin-4 protect cultured hippocampal
neurons against glutamate-induced apoptosis [826]. The time and
severity of seizures induced by systemic administration of the neuro-
toxin kainic acid is enhanced in GLP-1R KO mice relative to WT controls
whereas the destructive effect of kainic acid is ameliorated in the GLP-
1R KO mice upon targeted AAV-mediated restoration of hippocampal
GLP-1R expression [417].
The molecular mechanisms underlying the neuroprotective effects of
central GLP-1R agonism are, at least in part, mediated through the
ability to increase cAMP formation and subsequently to enhance
activation of PI3-kinase and ERK. GLP-1R agonism also increases
cAMP levels in cultured hippocampal neurons [826] and in PC12 cells
[825]. Pharmacological inhibition of either PI3-Kinase or ERK blocks
the stimulatory effect GLP-1 and exendin-4 on neurite outgrowth in
PC12 cells [825]. In PC12 cells, GLP-1 stimulation of neurite outgrowth
is only partially silenced by treatment with the PKA inhibitor H89,
indicating that cAMP-mediated activation of PI3K and ERK following
GLP-1R agonism does not fully depend on PKA signaling, at least in
these cells [825,827].

Huntington’s disease (HD) is characterized by severe neuro-
degeneration that is caused by a mutation of the huntingtin protein
(HTT) [828]. The neurotoxicity and neurodegeneration induced by the
mutant HTT protein has been attributed to enhanced oxidative stress
and accumulation of HTT due to inappropriate autophagic HTT clear-
ance [829]. The prevalence of T2DM is elevated in patients with HD
[830], suggesting that impaired insulin sensitivity might be a causal
factor contributing to neurodegeneration in HD patients [830,831].
Overexpression of mutant HTT impairs insulin signaling and stimulates
neuronal apoptosis in human SK-N-MC neuronal cells [831]. Treat-
ment of SK-N-MC cells with liraglutide improves insulin sensitivity and
enhances cell viability, potentially by mechanisms that include
amelioration of neuronal glucotoxicity, improvement of oxidative stress
and less aggregation of the mutant HTT through stimulation of AMPK-
mediated autophagy [831].
Alzheimer’s disease (AD) is characterized by neurodegeneration of
cholinergic neurons in the hippocampus. In a rat model of neuro-
degeneration, GLP-1 and exendin-4 ameliorated neurodegeneration by
reducing ibotenic acid-induced depletion of cholinergic cell bodies, as
demonstrated by preservation of choline acetyltransferase immuno-
reactivity in basal forebrain cholinergic neurons [826]. In rats,
administration of GLP-1R agonists into the hippocampus further pre-
vented impairment of spatial learning and memory induced by central
administration of amyloid b (Ab), a protein considered to play a
causative role in impairment of learning and memory in Alzheimer
disease [832,833]. Consistent with this, chronic GLP-1R agonism has
been demonstrated in several mouse models of AD to prevent the
development of memory deficits [834e836]. Clinical studies evalu-
ating the effect of GLP-1R agonism on neurodegeneration associated
with AD are scarce. AD is frequently reported to be accompanied by
decreased glucose transport across the BBB and 6 month treatment of
AD patients with liraglutide improved BBB glucose transfer relative to
placebo controls [837]. In a double blind placebo controlled study, 12
week treatment with liraglutide in patients at risk for AD did not show
cognitive differences between the study cohorts [838]. Other clinical
trials evaluating the neuroprotective effects of GLP-1R agonism on AD
are currently ongoing [839]
GLP-1 analogs have also proven successful for the treatment of Par-
kinson’s Disease (PD). PD is typically characterized by degeneration of
dopaminergic neurons, a condition that can be mimicked in experi-
mental animals by administration of the dopaminergic neurotoxin
MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin) [840e842]. In
mice, 7-d infusion of exendin-4 into the lateral ventricle was sufficient
to protect from MPTP-induced damage of the dopaminergic system
and from the development of locomotor deficits that typically arise from
dopamine deficiency [843]. Similar neuroprotective effects have been
reported in various PD rodent models treated with GLP-1R agonists
[844e849]. Consistent with this, exendin-4 increases survival and
levels of tyrosine hydroxylase, the key enzyme for dopamine produc-
tion, in primary neuronal cultures treated with the dopaminergic toxin
6-hydroxydopamine (6-OHDA) [843]. Several clinical studies have
confirmed the potential of GLP-1R agonism to ameliorate clinical
symptoms of PD, including long-lasting improvements of motor and
cognitive function [850e853].

19. GLP-1 EFFECTS ON BONE

The first understanding of GLP-1 actions in skeletal physiology arose
from GLP-1R KO mice, which exhibit a reduction in trabecular bone
mass due to a higher osteoclast activity [854]. In rodents, but not in
humans, activation of thyroid GLP-1R leads to C-cell stimulation in the
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thyroid [855,856], and involvement of calcitonin in GLP-1-mediated
osteoclast activation has been suspected [854]. Furthermore, these
animals exhibit profound modifications of bone matrix composition
with a lower collagen maturity that jeopardizes the biomechanical
response and hence contributes to skeletal fragility [857]. In com-
parison, GIPR KO animals present higher trabecular bone mass but
significant lower biomechanical resistance due to alterations of tissue
mineral density distribution and collagen maturity [858,859]. Double
incretin receptor knock-out (DIRKO) animals revealed that the GLP-1/
GLP-1R pathway was important for the integrity of cortical but not
trabecular bone [860].
GLP-1R agonists have been extensively used in animal models of
skeletal fragility. In ovariectomy-induced bone loss, exenatide en-
hances bone formation due to osteoblast activation [857]. In hindlimb-
unloading rats, exenatide improves bone mass by promoting osteo-
genic differentiation of bone marrow stem cells [861]. In type-1 dia-
betic models, although liraglutide is less effective than GIP analogues
in promoting osteoblast differentiation, it improves tissue material
biomechanics by reducing collagen degradation [862]. In type-2 dia-
betic models (genetically-inherited or diet-induced obesity), exenatide
significantly enhances bone strength by increasing trabecular bone
mass, bone formation and trabecular microarchitecture. Exenatide
significantly improves collagen maturity [863,864]. The use of the
unimolecular triple agonist GIP-Oxm is also significantly potent in
improving bone strength and restoring trabecular bone mass [865].
However, its mechanism of action is linked to reduced bone formation
and reduced osteoclast surfaces. GIP-Oxm leads to changes in
collagen lamellar orientation, improves collagen maturity and reduction
in advanced glycation end-products in the bone matrix. However, it is
not clear whether these ameliorations in bone strength result from
activation of skeletal GLP-1 receptors or whether it requires extra-
skeletal receptors as observed for the GIP/GIPR pathway [866]. As
such, a stable GIP agonist has been demonstrated to improve bone
quality in rats [867], whereas DPP-4 inhibition positively modified bone
composition but not bone microstructure in high fat fed mice [868].
Human studies report less compelling data on the effects of GLP-1 or
its analogues in bone remodeling markers or fracture. In contrast to
GLP-2 administration, subcutaneous injection of GLP-1 in healthy in-
dividuals had no effects on bone formation or resorption markers
[869]. In non-diabetic, overweight men, GLP-1 infusion seems to
reduce the extent of bone resorption in a similar way to GIP [787].
However, in obese, non-diabetic patients under anti-psychotic drugs,
exenatide failed to modify significantly the pattern of bone remodeling
[870]. In contrast, liraglutide was capable of enhancing bone formation
in obese weight-reducing women while having no effects on bone
resorption [871]. Data are more controversial in type-2 diabetes and
although first reports did not find evidence of protective effects of the
GLP-1 receptor agonist on bone fracture [872,873], more recent data
suggest that liraglutide and lixisenatide, but not exenatide, contribute
to reduce fractures in the diabetic population [874].

20. PHARMACOLOGICAL USE OF GLP-1 ANALOGS TO TREAT
OBESITY AND DIABETES

The exogenous supplementation of native hormones, commonly pu-
rified from tissue homogenates, has led to numerous, seminal dis-
coveries, most prominently the identification of insulin in 1921 [875]
followed by the discovery of glucagon in 1923 [3]. Despite numerous
such groundbreaking discoveries, including identifying the intestine as
a source of incretins [56], this practice did not necessarily identify
hormones capable of sufficiently lowering body weight.

Its anorexigenic and insulinotropic action make GLP-1 an appealing
candidate for the treatment of obesity and diabetes. The pharmaco-
logical value of native GLP-1, however, is limited by a short half-life
[182,185,876] and dose-limited adverse gastrointestinal effects
[734,877]. A common approach to enhance the therapeutic benefits of
GLP-1-based pharmacology is therefore to improve its pharmacoki-
netics. Biochemical modification of the native peptide has enhanced
exposure and time of action to improve the metabolic efficacy at
tolerable doses. Furthermore, these optimized molecules allow for less
frequent administration, which places less burden on the patient and
improved compliance.

20.1. Optimized GLP-1 monoagonists
Several structurally refined GLP-1 derivatives with improved bioavail-
ability and sustained action have been developed for the treatment of
T2DM [878]. These drugs include exenatide (Byetta�, short-acting;
and Bydureon�, long-acting, AstraZeneca), lixisenatide (Lyxumia�,
Sanofi), liraglutide (Victoza�; Novo Nordisk), dulaglutide (Trulicity�;
Eli Lilly & Co), albiglutide (Tanzeum�, GlaskoSmithKline), and sem-
aglutide (Ozempic�, Novo Nordisk) [878].
Exenatide (Byetta� and Bydureon�, AstraZeneca), is a synthetic 39-
amino acid peptide (first discovered as exendin-4 in the saliva of the
gila monster, Heloderma suspectum) (Figure 8) [879]. The first 30
amino residues of exendin-4 have w53% sequence homology to
mammalian GLP-1, whereas the C-terminal nonapeptide extension
has no similarities. Unlike GLP-1, exendin-4 has a glycine at the
second amino acid position at the N-terminus, which protects the
peptide from DPP-4-mediated degradation and inactivation. In addi-
tion, exendin-4 differs from mammalian GLP-1 by a series of amino
acids in the central and C-terminal domains that include Leu10,
Lys12, Gln13, Met14, Glu16, Glu17, Tyr19, Arg20, Leu21, Glu24,
Lys27, Asn28, and Gly30. The C-terminal end of exendin-4 is
extended relative to GLP-1 by 9 amino acids. The C-terminal
extension supports a secondary structure by formation of a trypto-
phan cage and improves potency at the GLP-1 receptor [880]. When
administered either i.v., i.p., or s.c. in rats, the half-life of exendin-4
is 18e41 min, 125e174 min, and 90e216 min, respectively [194].
Relative to GLP-1 (7e36 amide), the bioavailability of exendin-4 is
nearly doubled from 36 to 67% for GLP-1 to 74e76% for exendin-4,
with decelerated plasma clearance from 35 to 38 ml/min to 4 e
8 ml/min [194]. These pharmacokinetic parameters support twice-
daily administration in humans. In patients with T2DM, exenatide
decreases fasting and post-prandial levels of blood glucose [881e
884], slows gastric emptying [885], reduces cardiovascular risk
factors [886] and decreases body weight accompanied by suppres-
sion of food intake [885e887]. The placebo-subtracted weight loss
from baseline induced by exenatide is typically in the range of low
single-digit percentages. After 82 wk of treatment of T2DM patients
with exenatide, the placebo-subtracted weight loss from baseline is
approximately 5% [886]. A once-weekly formulation of exenatide has
been developed by Amylin Pharmaceuticals and has been marketed
by AstraZeneca since 2012 under the trade name Bydureon�. The
primary ingredient in the formulation that allows for extended-release
is polyD,L-lactide-co-glycolic acid. Together with the other excipients
of the formulation, the pharmacokinetics of exenatide are improved
by a mechanism involving the formation of a depot of microspheres
at the injection site, which slows dissipation from the injection site
[888]. Compared to classical exenatide given twice daily (BID, the
once-weekly (QW) formulation at a 2 mg dose level provides a
relatively stable plasma concentration at steady-state (w300 pg/ml)
because of the more continuous delivery of the drug, with equal (or

MOLECULAR METABOLISM xxx (xxxx) xxx � 2019 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

MOLMET885_proof ■ 2 October 2019 ■ 27/59

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


slightly improved) efficacy on glycemic control and body weight after
24 and 30 wk of treatment [888].
Lixisenatide (Adlyxin�, Sanofi) (Figure 8) is an analogue of exenatide in
which the proline at position 38 is omitted and six sequential lysine
residues are added to the C-terminus [889]. Lixisenatide has com-
parable pharmacokinetic properties relative to exenatide and is, with a
half-life of w3e4 h, marketed for daily use in humans [890,891]. In
patients with T2DM, the reduction in HbA1c is not overtly different
between twice daily or once daily administration of lixisenatide [892].
Liraglutide at doses of 1.2 and 1.8 mg (Victoza�, Novo Nordisk) was
approved for the treatment of type 2 diabetes in 2009 (Figure 8).
Liraglutide is based on the native GLP-1 (7e37) sequence with a
(conservative) substitution of lysine at position 28 with arginine. The
alanine at the second position from the N-terminus is preserved in
liraglutide. However, the lysine at position 20 is linked via a gamma-
glutamic acid spacer to palmitic acid (C16:0), which via binding to
albumin renders the drug less susceptible to DPP-4 proteolysis. The
acylation also promotes multimeric formation, which decelerates
diffusion from the site of injection [893]. In effect, the non-covalent
binding of the fatty acid to albumin in effect prevents renal clear-
ance. Altogether, these chemical modifications manifest in improved
bioavailability and a half-life of w12 h [894], supporting once-daily
injection in humans. Higher dose liraglutide (3 mg) has been
approved for the treatment of obesity since 2014 (Saxenda�). The
weight loss induced by liraglutide at 3 mg is typically in the range of
w5e10% after 52 wk of treatment of non-diabetic obese patients
[895].
Semaglutide at doses of 0.5 and 1.0 mg once weekly (Ozempic�,
Novo Nordisk) has been approved for the treatment of T2DM and has
been marketed since 2018 (Figure 8). Semaglutide is essentially an
analogue of liraglutide. The DPP-4-sensitive alanine at the second N-
terminal position in liraglutide is exchanged with an aminoisobuturic
acid (Aib). Additionally, the palmitic (C16:0) fatty monoacid in liraglu-
tide is exchanged to dicarboxylic-stearic acid (C18:0), and the link to
this diacid-based fatty acid is extended relative to that in liraglutide
with a synthetic spacer repeat [896]. These chemical modifications
extend the half-life of semaglutide to 160 h upon subcutaneous in-
jection in humans, supporting once-weekly administration [897].
Once-weekly injections of semaglutide dose-dependently induces
body weight loss of up to 7% and reduces HbA1c by 1.8% after 40 wk
of treatment in T2DM patients [898]. Semaglutide at a higher dose is
being explored clinically for the treatment of non-diabetic obese pa-
tients, and an alternative oral formulation of semaglutide has

completed Phase 3 clinical trials for type 2 diabetes. In patients with
type 2 diabetes, semaglutide also reduces the risk for an adverse
cardiovascular event, with decreased rates of MACE (Major Adverse
Cardiovascular Events, comprising cardiovascular death, nonfatal
myocardial infarction and stroke) [899].
Dulaglutide at 0.75 and 1.5 mg (Trulicity�, Eli Lilly & Co) has been
approved for the treatment of T2DM patients. Dulaglutide consists of
two GLP-1 molecules fused at their C-termini to a human Fc fragment
of immunoglobulin G4 (IgG4) via a glycine and serine-based spacer. In
each of the two GLP-1 motifs, certain exendin-4 residues are intro-
duced to replace the native GLP-1 residues. A glycine at the second N-
terminal position protects the molecule from DPP-4 inactivation while a
glutamic acid at position 16 stabilizes the secondary structure and
improves potency. A glycine substitution at position 30, along with the
native glycine at C-terminus of GLP-1 (7e37), serves as a leadein
sequence to the spacer that anchors the IgG4 Fc fragments.
Together, these modifications improve bioavailability and decelerate
renal clearance [900]. The resulting half-life of 90 h in humans renders
the drug suitable for once weekly administration by injection (Figure 8)
[901]. After 26 wk of once-weekly treatment of T2DM patients,
dulaglutide at 1.5 mg reduces body weight by nearly 3% from baseline
and lowered HbA1c by 1.4% [902].
Albiglutide is a head-to-tail tandem of two GLP-1 molecules in which
the C-terminus of the first molecule is fused to the N-terminus of the
second. Each of the two GLP-1 molecules has a glycine substitution at
the DPP-4 sensitive moieties. The C-terminus of the second GLP-1 is
covalently fused to human albumin, thereby slowing renal clearance
and augmenting the half-life to w120 h in humans [903], supporting
once-weekly administration to humans. Albiglutide at 50 mg
(Tanzeum�, GlaskoSmithKline) is approved for the treatment of type 2
diabetes but is no longer marketed.
A common feature of the GLP-1 analogs is the dose-dependent
appearance of gastrointestinal adverse effects, most commonly
nausea, vomiting, and diarrhea. Compared to short-acting GLP-1 an-
alogs (such as exenatide bidaily), long-acting analogs are associated
with less nausea and vomiting but with a greater prevalence of diar-
rhea [734]

20.2. GLP-1-based combination therapies for individual dosing
Chemical modification of native GLP-1 has been essential to advance
the pharmacological value of GLP-1R agonism for the treatment of type
2 diabetes and obesity. Nonetheless, the use of these improved GLP-
1R monoagonists to treat obesity is still limited, perhaps related to the

Figure 8: Timeline of GLP-1R agonists approved by the FDA for the treatment of diabetes. Numbers in parenthesis reflect the half-life of the molecules. For further ex-
planations, please see text.
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level of body weight-lowering efficacy achieved with GLP-1R agonism
alone. Higher doses of GLP-1R agonists can achieve clinically relevant
weight loss, and greater increases in dose levels, in theory, can drive
more weight-lowering efficacy. However, adverse gastrointestinal ef-
fects generally preclude the use of higher doses, even with adjusted
uptitration dosing algorithms [734,877].
Despite the appreciable weight lowering effect of semaglutide, single
use of GLP-1R monoagonism may still have limited ability to drive body
weight loss into the w20% range, GLP-1R agonism is a vital ingre-
dient that can be used in adjunct with other body weight-lowering
hormones to optimize weight loss at tolerable doses. It seems intui-
tive to assume that adjunct administration of several independent
hormones, each given at a tolerable dose, would enhance metabolic
outcome beyond what can be achieved by each hormone alone. In an
ideal case, such co-administration would engage complementary
signaling mechanisms such that the magnitude of metabolic benefits
might be even greater than the sum of the individual monotherapies e
i.e., producing synergy. Historic examples of such a co-administration
therapy for the treatment of obesity include the famous rainbow pills
[878]. These pills, which enjoyed great popularity in the 1940’s and
1950’s, comprised a series of weight lowering substances such as
thyroid hormone, amphetamines, and laxatives. However, adverse
effects on the cardiovascular and brain reward systems led to their
discontinued use [878]. A more recent and controlled example of a
polypharmacological anti-obesity pharmacotherapy is Qsymia� (Vivus
Inc.), a combination of phentermine and topiramate. Qsymia, an
extended-release formulation of this combination, was approved by the
FDA for the treatment of obesity in 2012. Placebo-subtracted weight
loss achieved by Qsymia is typically in the range of 5e10% after up to
56 wk of treatment [904,905]. The combination of GLP-1R analogs
with basal insulin has yielded promising effects to accelerate metabolic
and glycemic outcomes in patients with type-2 diabetes [906e908].
Relative to the monotherapies, the benefits of this combination therapy
include a greater decrease of HbA1c with an increased likelihood to
achieve an HbA1c � 7% [907]. Similar findings are reported for the
combination of insulin with DPP-4 inhibitors [909]. Treatment of type-2
diabetic patients with a combination of the DPP-4 inhibitor sitagliptin
and liraglutide showed no greater efficacy on glucose control relative to
treatment with liraglutide alone, potentially because of GLP-1R satu-
ration by the liraglutide monotherapy [910]. One study in type-2 dia-
betic patients reported improved glycemic control when exenatide was
added to ongoing treatment with sitagliptin as compared to switching
from sitagliptin to exenatide monotherapy [911].
Preclinical studies have evaluated the therapeutic potential of GLP-1
based polypharmacology for the treatment of obesity and diabetes.
The various approaches include the combination of GLP-1R agonists
with leptin [912,913], salmon calcitonin [914], PYY [915], CCK [916],
insulin [917], adrenomedullin [918], and b3-adrenergic receptor ag-
onists [919], and antagonists at the cannabinoid receptor 1 (CB1)
[920], or agonists at the receptors for melanocortin-4 (MC4R) [685] or
farnesoid-x (FXR) [921]. In summary, a series of GLP-1-based com-
bination therapies has been found to offer metabolic benefits greater
than what is achieved by treatment with each compound alone.

20.3. Unimolecular GLP-1-based polypharmacology
Another more recently developed concept of polypharmacology is to
combine some of the sequences of several structurally related hor-
mones into a single entity of enhanced potency and sustained action.
The concept underlying these unimolecular multi-agonists is that a
single molecule with complementary signaling through more than one
receptor, each of which offers beneficial effects on systems

metabolism, would maximize metabolic outcomes at tolerable doses.
This strategy has refined the toolbox of weight loss pharmacology, and
several molecules with agonism at key metabolic receptors are, as
reviewed below, currently in clinical evaluation. One might ask why a
unimolecular multi-agonist is believed to be superior over the adjunct
administration of the independent hormones? Apart from the possibility
that acquiring regulatory approval is seemingly easier for a single
molecule relative to a co-mixture of hormones, it must be considered
that each molecule in a co-mixture has its own unique pharmacoki-
netic profile. Simultaneously injected hormones might differ in their
half-life and time of action due to differences in rates of absorption,
distribution, metabolism, and clearance, as well as the potential for
drugedrug interaction. While these differences might compromise the
optimal metabolic outcome of a co-mixture of separate molecule en-
tities, a single molecule might bypass some of these limitations. With a
single molecule approach, the ratio of activities of the constituents,
however, will be fixed, whereas individual combination therapies
present the potential benefit of being titratable to allow more optimal
ratio between doses of the agonists. This is particularly important
when one of the components has a narrow therapeutic window.

20.3.1. GLP-1 dual- and triple-agonists
The possibility of using glucagon as a constituent of a multi-functional
single molecule for the treatment of chronic metabolic diseases was
initially counterintuitive due to its established role in raising blood
glucose as part of the counter-regulatory physiological response to
defend against insulin-induced hypoglycemia. However, the catabolic
qualities of glucagon, notably its effect to decrease hepatic fat and
circulating lipids, could be leveraged for therapeutic benefit in meta-
bolic diseases if its diabetogenic action were mitigated. The prospect
emerged of using GLP-1 to buffer the hyperglycemic effect of glucagon
while providing complementary mechanisms to lower body weight,
most notably the effects of GLP-1 to suppress appetite to coincide with
the energy expenditure effect of glucagon. Co-infusion of GLP-1 and
glucagon to human subjects resulted in decreased food intake, likely
secondary to GLP-1 action, and increased energy expenditure, sug-
gested to be driven by glucagon action [783,785]. Chronic co-
administration of selective mono-agonists to obese non-human pri-
mates resulted in significantly more body weight loss when compared
to the individual treatments, thus demonstrating the translation of
these acute effects observed in humans and the chronic effects
observed in primates [673].
The structural similarity of GLP-1 and glucagon as well as of their
respective receptors, along with the inherent low-potency promiscuity
of these hormones at the other respective receptors (apart from the
pancreas, where glucagon has recently been demonstrated to also act
on GLP-1R [173]), suggested the possibility of integrating both activ-
ities into a sequence-intermixed single molecule hybrid. Preclinical
proof of concept of enhanced body weight lowering relative to GLP-1
mono-therapy without impaired glycemic control was first demon-
strated by two independent research efforts. Both of these GLP-1/
glucagon co-agonists, one based on a glucagon-derived backbone
[922] and the other based on an oxyntomodulin-derived sequence
[923], had superior weight loss in obese rodents relative to matched
analogs that were selective in activity towards GLP-1R. Since these
initial reports, other medicinal chemistry strategies have been
employed to design unique GLP-1/glucagon co-agonists, including the
use of exendin-4 derived sequences [924], resulting in a rich pipeline
of candidates that are advancing through clinical trials [925]. Two
unique compounds have been evaluated in Phase 2 trials (SAR425899
and MEDI0382), and although dual-agonism has produced promising
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results on body weight and glycemic control in diabetic patients
[926,927], it is not apparent that these co-agonists are superior to
selective GLP-1R agonists.
The original rationale for combining GLP-1 and GIP, the other pre-
dominant incretin hormone, was to leverage the individual islet effects
of each hormone to impart superior glycemic control. Co-infusion of
GLP-1 and GIP to healthy human subjects has resulted in increased
insulinotropic effects [928].
However, controversy still exists as to whether it is best to thera-
peutically promote or inhibit GIP action for beneficial effects on gly-
cemic control and body weight [929e931] as both GIPR agonists [932]
and antagonists [933,934] have decreased body weight in preclinical
studies as individual treatments, but also to induce synergistic body
weight loss when combined with GLP-1R agonists. It is important to
note that recent independent confirmations on the prospects of GIPR
agonism have been demonstrated with other GIP analogs [935,936].
As with glucagon, the structural similarity of GLP-1 and GIP provided
the opportunity for rationally engineering single molecules of chimeric
design [937]. The first reported GLP-1/GIP co-agonists, which had
prolonged half-lives due to the use of fatty acylation or PEGylation,
yielded synergistic effects, lowering body weight in obese rodents
relative to the individual mono-agonist comparators [465] and having a
greater insulinotropic effect in non-human primates. Tirzepatide
(LY3298176), a once-weekly GLP-1/GIP co-agonist, was superior to a
GLP-1R agonist (dulaglutide) in preclinical studies in terms of body
weight loss and glycemic control improvement [938]. In the phase 2
study of type-2 diabetic patients, Tirzepatide produced a profound
reduction in body weight and improved HbA1c levels, both of which
were superior relative to effects of Dulaglutide in the active comparator
arm [939], thus demonstrating the translation of the preclinical ob-
servations. Whether GIP-based co-agonists can provide greater
maximal clinical efficacy, relative to optimized GLP-1R agonists re-
mains unknown, and may be further evaluated in Phase 3 studies.
Based on the encouraging efficacy of GLP-1/glucagon and GLP-1/GIP
co-agonists, it was rationalized that a single molecule with triple
agonism at all three of these receptors might provide even greater
efficacy than the respective co-agonists. The glucagon component
would presumably confer energy expenditure benefits that are
noticeably absent from GLP-1 and GIP pharmacology [465,932,938],
and thus permit greater body weight lowering potency and efficacy.
The GIP component is hypothesized to provide an additional mecha-
nism to buffer against the hyperglycemic effects of glucagon [940],
thus permitting triple agonists of higher potency at the glucagon re-
ceptor that in theory could drive more body weight loss. Indeed, a
monomeric peptide with potent and balanced triple agonism of GLP-
1R, GIPR, and GcgR induced greater body weight loss than the
respective co-agonists and mono-agonists in obese mice [466].
Similar preclinical benefits of a triple-acting GLP-1R, GIPR, and GCGR
peptide have been observed in high-fat fed mice [941]. Readouts from
the first clinical trials with triagonists will determine if such triple
agonism has the curative potential that the preclinical data suggest.

20.3.2. GLP-1-based peptide-nuclear hormone conjugates
An alternative molecular format to achieve sequence-intermixed
chimeric or hybridized peptides is single-molecule fusions or conju-
gates. As noted, the sequence similarity within the glucagon super-
family of peptides and the structural similarity within the secretin
receptor family served as the molecular basis for engineering chimeric
peptides with agonism at multiple receptors and with sizes comparable
to the native peptides. Thus, engineering GLP-1-based multi-agonists
that are hybridized sequences is likely restricted to similarly structured

hormones. However, the theoretical combinations with GLP-1 can be
extended to structurally diverse hormones because multi-valent
chemical fusions or conjugates are possible where the second
effector molecule can vary from small oligonucleotides and nuclear
hormones to peptides and large proteins.
Single molecule fusions of GLP-1 to the peptide hormones gastrin,
amylin, and cholecystokinin have been reported, as have fusions of GLP-
1 to larger proteins such as FGF21, and to inhibiting antibodies against
PCSK9. GLP-1/gastrin fusions hold potential to re-granulate diseased
islets and improve islet cell health in rodents genetically prone to develop
diabetes [942]. Interestingly, modified GLP-1/gastrin fusion molecules
that also incorporate bioactivity of the related gut hormone xenin have
been found to have considerable preclinical efficacy [943,944]. GLP-1/
amylin fusions have potential in obese diabetic patients by capitalizing
on two independent pharmacological functions to reduce food intake and
lower blood glucose. Pre-clinical studies with GLP-1/amylin fusions have
demonstrated body weight lowering efficacy in obese rodents [945].
Similarly, GLP-1/CCK fusions can capitalize on non-redundant food
intake mechanisms to lower body weight. An optimized GLP-1/CCK
fusion had enhanced efficacy to lower body weight in obese rodents
relative to mono-agonist controls and their co-administration [946,947].
FGF21 analogues have been observed to potently lower triglycerides in
T2DM patients [948] and to promote energy expenditure in rodents.
Thus, GLP-1/FGF21 fusions have the potential, at least in rodents, to
provide greater improvements in dyslipidemia than GLP-1R agonists and
have the potential to drive greater body weight loss through the energy
expenditure mechanism not evident with GLP-1 mono-therapy. GLP-1/
FGF21 fusions have been reported to dose-dependently lower body
weight in obese mice, and co-administration of the respective mono-
agonists results in synergistic body weight loss in obese mice (ab-
stracts). The combination of GLP-1 and anti-PCSK9 antibodies, like the
GLP-1/FGF21 combinations, has great promise in diabetic patients at
risk of cardiovascular disease due to effects on hypercholesterolemia. A
pharmaceutically-optimized GLP-1/anti-PCSK9 antibody was reported to
have potent weight lowering efficacy in obese rodents and to have potent
effects to lower cholesterol in cynomolgous monkeys [949]. In a recent
phase I clinical study, treatment of overweight and obese patients with
GLP-1/anti-PCSK9 decreased LDL cholesterol but failed to improve
glucose metabolism [950].
Oncolytic drug discovery research has been at the forefront of tissue-
targeting strategies as a pharmacological tool to improve the efficacy
of immunological agents by empowering them with classical chemo-
therapeutic mechanisms, a procedure which also results in an
improved therapeutic window for the classical small molecule. By
leveraging the high specificity of the antibodies and employing meta-
stable covalent linkages of a cytotoxic payload, this effector molecule is
targeted specifically to the antigen-producing cells. Once targeted, the
cytotoxic agent is channeled into the cell via the antibody internali-
zation process where it is released internally to provide a cytotoxic
mechanism that is complementary to the immunological effects of the
antibody. A similar concept has emerged in metabolic disease drug
discovery research, although it is fundamentally different from the
oncology field, because the effector molecule is not meant to drive a
cell-killing effect but a cell-altering effect.
GLP-1R analogs have been leveraged for their relatively selective
modalities of action in pancreatic islets and the central nervous system
to precisely deliver cargo such as antisense oligonucleotides and
nuclear hormones to these tissues. The aim is to alter the cellular
physiology of these specific cell subtypes by the action of the effector
molecule while simultaneously capitalizing on the therapeutic benefits
of the GLP-1 targeting molecule. GLP-1/antisense conjugates have
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been developed to bypass a refractory nature of pancreatic b-cells to
the uptake of antisense oligonucleotides while harnessing the un-
tapped potential of these oligonucleotides to repress the expression of
pathological intracellular targets [951]. Conjugates of particular anti-
sense oligonucleotides to a GLP-1 analog enhanced the productive
uptake of the oligonucleotide in GLP-1R expressing cells to elicit se-
lective and effective gene silencing in vitro and in vivo with limited off-
target accumulation of the oligonucleotide. Although the therapeutic
benefits have yet to be reported for a specific GLP-1/antisense
molecule designed to deliver a therapeutically-relevant antisense,
the data suggest that GLP-1R is a suitable vector for in vivo tissue
targeting, cellular internalization, and intracellular deposition of a cargo
moiety. However, a comprehensive application of GLP-1R mediated
targeting has yet to be demonstrated though translational pharma-
cology experiments.
In other pre-clinical experiments, GLP-1 analogs have been utilized to
selectively deliver nuclear hormone payloads to cells in a targeted
manner. Estrogen has pleotropic, beneficial effects on metabolism yet
the reproductive endocrine toxicity and tumorigenic potential limits its
use in chronic settings other than hormone replacement therapy.
Emerging preclinical data suggest that a GLP-1/estrogen conjugate
enhances the anorectic, body weight lowering, insulinotropic, and islet
preservation effects in mice relative to the GLP-1 analog or estrogen
alone [467,952,953]. Importantly, this GLP-1/estrogen conjugate was
devoid of the uterotrophic effect evident with estrogen alone,
demonstrating an improved therapeutic index mediated by the GLP-1
component. GLP-1R targeting has also been leveraged to deliver the
anti-inflammatory properties of dexamethasone to metabolically rele-
vant tissues. Although glucocorticoids are potent anti-inflammatory
molecules, chronic treatment oftentimes results in compromised
metabolic control, notably due to hepatic action to increase glucose
production. In mice, a GLP-1/dexamethasone conjugate circumvented
action in the liver and skeletal system to avoid the deleterious effects
on glycemic control and bone turnover, respectively, that is evident
with systemic dexamethasone action [820]. This GLP-1/
dexamethasone conjugate improved the body weight lowering po-
tency of the GLP-1 analog alone, partially by alleviating surrogate
markers of hypothalamic inflammation. Despite these provocative
preclinical findings suggesting a targeting phenomenon that results in
enhanced efficacy and improved therapeutic index for these nuclear
hormone conjugates, more studies are required to delineate the
mechanism for the intracellular delivery and release of the cargo along
with precise pharmacokinetic analyses. Furthermore, this targeting
principle requires additional validation, particularly in the context of
human biology, before tangible conclusions regarding its applicability
to clinical pharmacology can be made.

21. OUTLOOK

Depending on the molecule (native or recombinant long-acting) and the
route of administration, GLP-1 analogs have broad pleiotropic action on
metabolism. Among the numerous beneficial effects mediated by GLP-
1R agonists are regulation of blood glucose, lowering of body weight
via inhibition of food intake and the decrement of gastric motility,
stimulation of cell proliferation, reduction of inflammation and
apoptosis, improvement of cardiovascular function, and neuro-
protection. Recombinant GLP-1R analogs with improved pharmaco-
kinetics and sustained action are successful in the treatment of type-2
diabetes, and there is considerable and ongoing effort to further
optimize their action profile to improve therapeutic outcome and

patient compliance. Novel peptides that combine the pharmacology of
GLP-1 with that of other gut peptides are in clinical evaluation for the
treatment of diabetes and obesity. While long-term clinical studies are
ongoing, we can be carefully optimistic that improved GLP-1-based
pharmacology can one day be safely applied to further lower body
weight relative to currently available GLP-1R agonists.
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