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The proglucagon-derived peptides (PGDPs) are
encoded by a single mammalian proglucagon gene.
Tissue-specific posttranslational processing medi-
ated by prohormone convertase (PC) enzymes lib-
erates these peptide hormones in a tissue-specific
manner (FIGURE 1). PC1/3 is essential for genera-
tion of the glucagon-like peptides (GLPs) in
enteroendocrine cells (38, 101), whereas PC2 is
critical for processing of pancreatic glucagon from
islet �-cells (52, 102). The PGDPs are released from
endocrine cells in response to changes in blood
glucose (pancreatic glucagon in the islets) or nutri-
ent ingestion (GLP-1 and GLP-2 in the intestine)
and exert their effects through distinct G protein-
coupled receptors (GPCRs).

Glucagon is released from the �-cells of the pan-
creatic islets of Langerhans in response to reduced

levels of blood glucose, and it stimulates glucose
production and glycogen breakdown in the liver.
Gut-derived GLP-1 and GLP-2 regulate multiple
pathways promoting glucose homeostasis and
energy absorption, respectively. GLP-1 and GLP-2
also increase �-cell and intestinal mucosal mass,
respectively, by increasing proliferation and
inhibiting apoptosis (39). The physiological impor-
tance of the remaining PGDPs is less well-defined,
and separate receptor(s) for either glicentin or
oxyntomodulin have not yet been identified.

Enteroglucagon

The term enteroglucagon refers to intestinal GLPs,
principally glicentin and oxyntomodulin, that ex-
hibit overlapping immunoreactivity when incubat-

ed with various antisera
directed against gluca-
gon. Glicentin and oxyn-
tomodulin are liberated
from proglucagon in gut
endocrine cells and are
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Glucagon is used for the treatment of hypoglycemia, and glucagon receptor

antagonists are under development for the treatment of type 2 diabetes.

Moreover, glucagon-like peptide (GLP)-1 and GLP-2 receptor agonists appear to

be promising therapies for the treatment of type 2 diabetes and intestinal disor-

ders, respectively. This review discusses the physiological, pharmacological, and

therapeutic actions of the proglucagon-derived peptides, with an emphasis on

clinical relevance of the peptides for the treatment of human disease.
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FIGURE 1. Structural organization of proglucagon and the proglucagon-derived peptides
Peptides liberated specifically in the pancreas or intestine are indicated below the full-length proglucagon sequence
along with their amino acid sequence and therapeutic potential. The numerals above the proglucagon structure indicate
the relative amino acid positions of the proglucagon-derived peptides within proglucagon. GLP, glucagon-like peptide;
GRPP, glicentin-related pancreatic peptide; MPGF, major proglucagon-derived fragment; IP, intervening peptide.
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cells and possibly in fat (45, 60, 116).

Physiology and therapeutic potential

Diabetes has long been viewed as a bihormonal
disease (121) with insulin deficiency or insulin
resistance, together with glucagon excess, leading
to the development of hyperglycemia. Conversely,
a substantial literature documents the importance
of normal glucagon secretion for counterregulation
during insulin-induced hypoglycemia (31, 32), and
susceptible individuals with type 1 diabetes may
use glucagon as an adjunctive therapy for the treat-
ment of severe hypoglycemia. Studies in type 2 dia-
betics reveal that a lack of glucagon suppression
contributes to increased postprandial hyper-
glycemia, due in part to accelerated glycogenolysis
(110). Accordingly, glucagon receptor antagonists
represent a potential approach for the treatment of
type 2 diabetes (70), and both peptide and nonpep-
tide antagonists of the glucagon receptor block the
hyperglycemic effect of exogenous glucagon in
normal and diabetic animals (69).

Several experimental approaches have demon-
strated the importance of endogenous glucagon for
development of hyperglycemia in experimental
models of diabetes. Neutralizing glucagon antibod-
ies abolished the postprandial increase in glucose
levels in moderately hyperglycemic streptozotocin-
diabetic rats (16). More recently, antisense oligonu-
cleotides against the Gcgr decreased levels of liver
glucagon mRNA and significantly reduced blood
glucose, triglycerides, and free fatty acids in db/db
mice (82). Similar experiments employing Gcgr
antisense oligonucleotides ameliorated experi-
mental diabetes in db/db and ob/ob mice and in the
Zucker diabetic fatty rat (115). Remarkably, both
transient and complete genetic attenuation of Gcgr
expression is associated with the development of
islet �-cell hyperplasia, increased pancreatic
insulin content, and raised circulating levels of
plasma GLP-1 (53, 115). Hence, attenuation of
glucagon receptor signaling exerts antidiabetic
effects directly via modulation of hepatocyte glu-
cose production and indirectly via increased pan-
creatic generation of bioactive GLP-1.

A number of nonpeptide glucagon receptor
antagonists with diverse structures have been
described and studied in both rodent and human
models. The Gcgr antagonist called compound 1
was shown to block glucagon-mediated
glycogenolysis in human hepatocytes and perfused
mouse liver (99). Furthermore, glucagon receptor
antagonists such as Bay 27-9955 have been shown
to block the actions of exogenous glucagon in nor-
mal human subjects (96). Hence, attenuation of
glucagon receptor signaling represents an intrigu-
ing physiological approach for the treatment of
type 2 diabetes.
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cosecreted from intestinal L-cells together with GLP-
1 and GLP-2 (93). Glicentin stimulates insulin and
inhibits glucagon secretion (91), inhibits gastric acid
secretion (77), regulates gut motility (111), and stim-
ulates gut growth (40, 89). Given the pharmacologi-
cal concentrations of glicentin used in these studies,
together with the absence of a separate glicentin
receptor, it seems likely that at least some of these
actions are attributable to activation of either
glucagon, GLP-1, or GLP-2 receptors.

Oxyntomodulin is a 37-amino-acid peptide
that stimulates insulin secretion, slows gastric
emptying, and inhibits gastric acid secretion (65,
66, 106, 107). Oxyntomodulin also stimulates
intestinal glucose uptake and decreases pancre-
atic enzyme secretion in rats (5, 30), whereas cen-
tral intracerebroventricular administration of
oxyntomodulin leads to a reduction in food
intake in both fed and fasted rodents (33). The
mechanism whereby oxyntomodulin exerts these
effects is still unclear; however, oxyntomodulin
displays weak activity for the glucagon receptor
(Gcgr) and may weakly mimic glucagon action in
the liver and pancreas (8). Furthermore, the
anorectic effect of oxyntomodulin in rats can be
blocked by the GLP-1 receptor antagonist
exendin-(9—39) (33). The anorectic actions of
oxyntomodulin are detectable in the absence of
functional glucagon receptors but are absent in
GLP-1 receptor (GLP-1R) –/– mice, further sug-
gesting that oxyntomodulin regulates food intake
through the GLP-1R (6). Oxyntomodulin reduces
food intake and induces satiety in short-term
studies of healthy human subjects (29). The long-
term actions of oxyntomodulin on body weight in
obese human subjects have recently been report-
ed (123a).

Glucagon

Synthesis and secretion

Glucagon is a 29-amino-acid peptide hormone
released from islet �-cells in response to hypo-
glycemia and is the main counterregulatory hor-
mone to insulin (32) with the insulin-to-glucagon
ratio determining the control of hepatic glucose
production through rates of gluconeogenesis and
glycogenolysis (FIGURE 2).

Gcgr

Gcgr contains 485 amino acids, shares 42%
sequence identity with the GLP-1 receptor, and is a
member of the secretin-glucagon receptor class II
family of GPCRs (67, 86). Gcgr activation stimu-
lates adenylate cyclase and increases levels of
intracellular calcium. Glucagon binding sites and
RNA transcripts have been identified in liver, kid-
ney, intestinal smooth muscle, brain, and islet �-
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GLP-1

Synthesis, secretion, and degradation
GLP-1 is a 30-amino-acid peptide hormone synthe-
sized in two principal equipotent molecular forms,
GLP-1-(7—36) amide and GLP-1-(7—37). After
ingestion of nutrients, two periods of GLP-1 secre-
tion can be identified: an early and a late phase.
The early phase initiates within minutes of eating
and may last for 30–60 min. The second phase is
more prolonged, lasting 1–3 h after a meal (48, 63),
and is probably attributable to direct interaction of
digested luminal nutrients with L-cells. The early
phase of GLP-1 secretion is likely regulated through
a combination of neural and hormonal mediators,
which remain poorly understood (44, 59, 100)

GLP-1 is rapidly inactivated and cleared from the
circulation following secretion from gut L-cells.
Bioactive intact GLP-1 undergoes enzymatic cleav-
age by the ubiquitously expressed serine protease
dipeptidyl peptidase IV (DPP-IV). This enzyme
cleaves at the penultimate alanine residue to pro-
duce an NH2-terminally truncated product inca-
pable of stimulating insulin release through the
GLP-1 receptor (74, 87). The half-life of intact GLP-
1 assessed following exogenous peptide adminis-
tration is <2 min in rodents (74) and in normal and
diabetic human subjects (35).

GLP-1 Action and the GLP-1R

GLP-1 potentiates glucose-stimulated insulin secre-
tion and enhances insulin biosynthesis via induc-
tion of insulin gene expression (41, 51) (FIGURE 2).
GLP-1 also stimulates somatostatin and inhibits
glucagon secretion (94). GLP-1R activation increas-
es �-cell mass through stimulation of �-cell prolif-
eration and neogenesis and inhibition of apoptosis
(39, 81). GLP-1 exerts
these effects through a
GPCR, a member of the
g l u c a g o n - s e c r e t i n
receptor family (119)
that is widely expressed
in pancreatic islets,
brain, heart, kidney, and
gastrointestinal tract
(27, 119). To date only
one GLP-1R has been
identified that trans-
duces GLP-1’s effects
coupled to control of
glucose homeostasis.
Intriguingly, GLP-1 has
been reported to im-
prove insulin sensitivity,
and various actions of
GLP-1 on peripheral tis-

sues such as muscle, liver, and fat have been report-
ed independently of the detection of the known
GLP-1 receptor. Hence, the presence of functional
GLP-1 receptors with different signaling properties
in peripheral tissues such as muscle, fat, and liver
remains a possibility.

GLP-1 stimulates adenylate cyclase and phos-
pholipase C with subsequent activation of cAMP-
dependent protein kinase A (PKA) and protein
kinase C (PKC) leading to an increase in cytosolic
calcium in both islet and nonislet cell lines (41, 64).
GLP-1 increases insulin gene transcription in a
PKA-independent manner (114). A role for cAMP
guanine nucleotide exchange factors (GEFs) in
downstream signaling from the GLP-1R in �-cells
and more specifically for cAMP GEF II has also
been demonstrated (71, 72). GLP-1 stimulates
insulin gene expression through activation of
nuclear factor of activated T-cells (NFAT) (80) and
activation of ERK through a mechanism dependent
on MEK but independent of both Raf and Ras (54).

The observation that GLP-1 stimulates �-cell
proliferation and promotes �-cell survival has
engendered much interest in the therapeutic
potential of GLP-1R agonists for enhancing �-cell
mass in human subjects with diabetes. GLP-1
increases cell proliferation, phosphoinositide 3-
kinase, and PDX-1 in islet cell lines in a PKC- and
epidermal growth factor receptor-dependent man-
ner (22, 23, 24, 122). GLP-1R agonists also induce
differentiation of pancreatic exocrine cells into an
endocrine phenotype, as evidenced by increased
expression of �-cell specific genes and develop-
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FIGURE 2. The major biological
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GLP-2 on different target tissues
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GLP-1 Receptor Agonists and DPP-
IV Inhibitors: Therapeutic Potential
for the Treatment of Type 2
Diabetes

Pharmacological administration of GLP-1 in
humans lowers blood glucose via stimulation of
insulin secretion, suppression of glucagon release,
and reduction of gastric emptying (57). Exendin-4,
isolated from the venom of the gila monster
Heloderma suspectum, is a potent GLP-1 receptor
agonist that shares 53% amino acid identity with
GLP-1 yet is resistant to DPP-IV cleavage (49).
Exenatide (synthetic exendin-4), the first clinically
approved GLP-1R agonist, lowered blood glucose in
subjects with type 2 diabetes in both short-term
and 30-wk clinical studies (21, 36, 73, 79).
Exenatide injected twice daily in combination with
metformin, sulfonylureas, or both oral agents sig-
nificantly reduced levels of HbA1c and fasting glu-
cose in association with modest degrees of weight
loss in 6-mo pivotal studies (21, 36, 73). Given the
success of Exenatide in lowering HbA1c and pre-
venting weight gain, there is considerable effort
underway to develop additional GLP-1R agonists
with more prolonged durations of action.

Alternative strategies for prolonging the half-life
of GLP-1 include coupling of degradation-resistant
GLP-1 analogs to albumin (75) or the creation of a
recombinant albumin-GLP-1 protein (7) to take
advantage of the long circulating half-life of albu-
min in vivo. Liraglutide is a fatty-acylated GLP-1
analog that binds human serum albumin in a non-
covalent manner. Liraglutide improves glucose
control in human diabetic subjects after once-daily
subcutaneous administration (37, 61, 84). CJC-1131
is a GLP-1 analog with a chemical linker attached to
the COOH terminus allowing for covalent binding
to albumin. CJC-1131 mimics the effects of native
GLP-1 in vivo by stimulating insulin secretion and
biosynthesis and by inhibiting food intake in a
murine model of type 2 diabetes (75). CJC-1131 is
currently being evaluated in phase II clinical trials
for the treatment of type 2 diabetes. Albugon is a
recombinant GLP-1-albumin protein that retains
the ability to activate GLP-1R-dependent pathways
coupled to reduction of blood glucose. Remarkably,
Albugon rapidly reduces food intake and inhibits
gastric emptying in preclinical studies within min-
utes of administration, suggesting that direct cen-
tral nervous system penetration of GLP-1R agonists
may not be required for GLP-1R-dependent actions
in the brain (7).

DPP-IV and glucose homeostasis

An alternative to GLP-1R activation involves the
inhibition of the activity of the enzyme DPP-IV
responsible for the degradation of native GLP-1.
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ment of glucose-stimulated insulin secretion (130).
The mechanisms important for GLP-1R-dependent
control of exocrine cell differentiation are incom-
pletely understood but appear to involve signaling
via bone morphogenic proteins and the TGF-�

pathway (125).

Extrapancreatic actions of GLP-1

GLP-1 inhibits gastric emptying and increases sati-
ety, leading to weight loss following chronic treat-
ment with GLP-1R agonists (76). GLP-1 receptors
have been localized to multiple regions of the
brain, including the hypothalamus, which is known
to regulate energy homeostasis (113). More recent-
ly, GLP-1 has been shown to exert effects on the
heart in dogs and rodents. GLP-1 or exendin-4
increases blood pressure and heart rate in rats (10),
and GLP-1R activation directly protects the heart
against ischemia/reperfusion injury in the rat (13).
Conversely GLP-1R–/– mice exhibit elevated left-
ventricular end-diastolic pressure and increased
left-ventricular thickness (55). Elimination or
restoration of GLP-1 receptor signaling has also
been shown to modify learning and enhance neu-
roprotection in rodents (46) (FIGURE 2).

The physiological importance of GLP-1 has been
examined using GLP-1 receptor antagonists such
as exendin-(9—39) and GLP-1R–/– mice.
Administration of exendin-(9—39) to rats or
human subjects reduces insulin secretion and
increases gastric emptying and plasma levels of
glucagon, leading to increased glycemic excursion
following glucose loading. These findings illustrate
the physiological importance of endogenous GLP-1

for control of islet hormone release, gut motility,
and glucose clearance (47, 104, 105). Similarly,
GLP-1R–/– mice exhibit mild fasting hyper-
glycemia and glucose intolerance after either oral
or intraperitoneal glucose loading, in association
with defective glucose-stimulated insulin secretion
(109). Moreover, GLP-1R–/– mice exhibit a reduc-
tion in the number of large islets, defective regen-
eration of �-cell mass following partial pancreatec-
tomy, and increased susceptibility to �-cell apopto-
sis following streptozotocin administration (34, 81,
83). Hence, endogenous GLP-1 is essential for both
�-cell function and the adaptive response to exper-
imental islet injury.
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Genetic inactivation of the DPP-IV gene in mice or
naturally occurring DPP-IV gene mutation in rats
results in improved glucose tolerance, enhanced
insulin secretion, and increased levels of intact
bioactive GLP-1 (85, 90). DPP-IV inhibitors have
been shown to improve glucose control in experi-
mental models of diabetes (2, 9, 95). Inhibition of
DPP-IV activity has also been shown to lower
HbA1c levels in short-term studies in type 2 diabet-
ics (1, 3). A number of DPP-IV inhibitors, including
Vildagliptin and Sitagliptin, are currently being
assessed in late-stage clinical trials. Most of these
inhibitors reduce DPP-IV activity by 50–90% at
12–24 h after administration, with a concomitant
two- to threefold increase in GLP-1 levels detected
after meal ingestion in human subjects.
Vildagliptin (LAF 237) has been shown to reduce
fasting glucose levels throughout the day, predom-
inantly via inhibition of glucagon levels and
enhancement of glucose-stimulated insulin secre-
tion. The long-term efficacy and safety of these
agents in subjects with type 2 diabetes is not yet
known.

GLP-2

Synthesis and secretion

GLP-2 is a 33-amino-acid peptide cosecreted with
GLP-1, oxyntomodulin, and glicentin from
enteroendocrine L-cells. Circulating levels of GLP-2
are low in the fasted state and increase following
food intake (17, 124). GLP-2, like GLP-1, contains
an alanine at position 2 and is inactivated by DPP-
IV cleavage in rodents and humans (42, 62).
Accordingly, bioactive intact GLP-2-(1—33)
exhibits a short t1/2 due to DPP-IV-mediated inacti-
vation and renal clearance (103, 118). Cleavage of
full length GLP-2-(1—33) generates the metabolite
GLP-2-(3—33) that exhibits weak agonist and par-
tial antagonist properties in rodents (112, 120).

The biological actions of GLP-2 were identified
following studies of rodents with glucagon-produc-
ing tumors. Nude mice with subcutaneous
glucagonomas exhibited significant bowel growth,
and subsequent experiments demonstrated that
the PGDP with potent intestinotrophic activity was
GLP-2 (40). Blockade of endogenous GLP-2 using
exogenous GLP-2-(30—33) reduced the extent of
adaptive mucosal hyperplasia detected after fast-
ing and refeeding in mice (112), implicating an
essential role for GLP-2 in mucosal growth and
apoptosis.

The GLP-2 receptor

The biological actions of GLP-2 are transduced
through a single receptor of the class II glucagon-
secretin family (88) with the GLP-2R sharing con-
siderable sequence identity with GLP-1R and

glucagon receptors (86, 88). GLP-2R mRNA tran-
scripts have been identified in the rodent stomach,
intestine, brain, and lung (88, 128). More recent
data using immunohistochemistry and in situ
hybridization techniques has localized GLP-2R
expression to human enteroendocrine cells,
murine enteric neurons, and subepithelial myofi-
broblasts in rat, mouse, marmoset, and human
intestine (12, 92, 128).

Activation of GLP-2 receptor signaling in heterol-
ogous cells expressing a transfected GLP-2R leads
to increased intracellular cAMP, activation of PKA,
an increase in cAMP-response element- and AP-1-
dependent gene transcription, and increased
immediate-early gene expression (88, 129). GLP-2R
activation confers resistance to chemically-
induced apoptosis in fibroblasts (15, 126) in associ-
ation with reduced levels of activated glycogen syn-
thase-3 (GSK-3), Bad, and Bax (127). Studies using
human HeLa cells demonstrate that GLP-2R activa-
tion leads to increased levels of cAMP and ERK1/2
activation; however, GLP-2 enhances cytoprotec-
tion in HeLa cells in a PKA-dependent but ERK1/2-
independent manner (78).

GLP-2 action and therapeutic potential

GLP-2 prevents or reduces mucosal epithelial dam-
age in multiple experimental models of intestinal
injury. Exogenous administration of a degradation-
resistant GLP-2 analog h[Gly2]-GLP-2 enhanced
the rate and magnitude of the intestinal adaptive
response in rats with major small bowel resection
(108). GLP-2 markedly enhanced survival and
reduced bacterial translocation and gut injury in
mice with nonsteroidal anti-inflammatory drug-
induced enteritis (14). Similarly, GLP-2 prevented
weight loss and reduced the severity of epithelial
damage in mice with dextran sulfate-induced coli-
tis (43). Moreover, GLP-2 exerts therapeutic actions
in a wide number of preclinical models of gut
injury, including chemotherapy-induced mucositis
(15, 117), ischemia-reperfusion injury (97, 98), and
genetic models of inflammatory bowel disease (4).

GLP-2 also exerts rapid actions independent of
mucosal growth and cytoprotection, including
stimulation of nutrient absorption (18, 28), inhibi-
tion of gut motility (123), reduction of intestinal
permeability (11), and modulation of intestinal
blood flow (56). GLP-2 enhances mucosal barrier
function by both transcellular and paracellular
pathways (11), and these actions are maintained in
the setting of experimental intestinal inflammation
or exogenous stress (25, 26).

GLP-2 may also exert its actions in the gut in the
absence of enteral nutrition. Exogenous GLP-2
dose-dependently increased small intestine
weight, DNA and protein content, and villus height
in parenterally fed neonatal piglets (19). Similarly,
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GLP-2 promoted gut mucosal growth in premature
pigs maintained with parenteral nutrition by sup-
pression of protein degradation and reduction of
apoptosis. (20). The antiapoptotic actions of GLP-2
described in studies of cell lines in vitro resemble
actions of GLP-2 in the injured gut in vivo (50).
GLP-2 increased survival of intestinal epithelial
cells in neonatal parenterally fed piglets in associa-
tion with induction of protein kinase B (PKB) and
GSK-3 phosphorylation and enhanced Bcl-2
expression (19). Intriguingly, the antiapoptotic
actions of GLP-2 were more prominent in the gut
epithelium at lower infusion doses (2.5 nM�

kg–1�day–1), whereas higher doses (10 nM�kg–1�

day–1) of exogenous GLP-2 stimulated pathways
coupled to cell proliferation (19).

The ability of GLP-2 to enhance nutrient absorp-
tion, increase the mucosal surface area, and pro-
mote intestinal epithelial survival has prompted
examination of the actions of GLP-2 in human sub-
jects with intestinal disorders, primarily short-
bowel syndrome. GLP-2 improved intestinal
absorption and nutritional status in a 5-wk pilot
study of patients with short-bowel syndrome (ter-
minal ileum and colon resected), with severe ener-
gy malabsorption (68). GLP-2 treatment increased
body weight and energy retention in association
with reduced nutrient loss, decreased bone resorp-
tion, and increased bone density in GLP-2-treated
patients (58). A degradation-resistant GLP-2 ana-
log, Teduglutide, is currently being examined in a
phase II study of Crohn’s disease and a phase II/III
study of short-bowel syndrome. The results of these
studies will provide some indication as to whether
GLP-2 therapy will prove safe and effective for
treatment of specific human intestinal disorders.

Conclusions

The structurally related PGDPs have generated
increasing interest due to their pleiotropic biologi-
cal properties as well as potential for the ameliora-
tion of common diseases such as diabetes and
intestinal disorders. The development of receptor
antagonists and mice with inactivating mutations
in the PGDP receptors has facilitated elucidation of
the essential physiological actions of these pep-
tides in different tissues. Furthermore, both recep-
tor agonists (glucagon, GLP-1, and GLP-2) and
antagonists (glucagon) have been developed for
the clinical treatment of human diseases. Taken
together, the PGDPs represent an important group
of related peptides essential for the control of cell
proliferation, cytoprotection, and energy home-
ostasis. �
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