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Inactivation of the cardiomyocyte glucagon-like
peptide-1 receptor (GLP-1R) unmasks
cardiomyocyte-independent GLP-1R-mediated
cardioprotectiona,b
John R. Ussher 1, Laurie L. Baggio 1, Jonathan E. Campbell 1, Erin E. Mulvihill 1, Minsuk Kim 1,
M. Golam Kabir 1, Xiemin Cao 1, Benjamin M. Baranek 1, Doris A. Stoffers 2, Randy J. Seeley 3,
Daniel J. Drucker 1,*
ABSTRACT

GLP-1R agonists improve outcomes in ischemic heart disease. Here we studied GLP-1R-dependent adaptive and cardioprotective responses to
ventricular injury. Glp1r�/� hearts exhibited chamber-specific differences in gene expression, but normal mortality and left ventricular (LV)
remodeling after myocardial infarction (MI) or experimental doxorubicin-induced cardiomyopathy. Selective disruption of the cardiomyocyte GLP-
1R in Glp1rCM�/� mice produced no differences in survival or LV remodeling following LAD coronary artery occlusion. Unexpectedly, the GLP-1R
agonist liraglutide still produced robust cardioprotection and increased survival in Glp1rCM�/� mice following LAD coronary artery occlusion.
Although liraglutide increased heart rate (HR) in Glp1rCM�/� mice, basal HR was significantly lower in Glp1rCM�/� mice. Hence, endogenous
cardiomyocyte GLP-1R activity is not required for adaptive responses to ischemic or cardiomyopathic injury, and is dispensable for GLP-1R
agonist-induced cardioprotection or enhanced chronotropic activity. However the cardiomyocyte GLP-1R is essential for the control of HR in
mice.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. INTRODUCTION

Type 2 diabetes mellitus is treated using pharmacotherapy with agents
acting through distinct anti-diabetic mechanisms that may be asso-
ciated with unexpected adverse effects on cardiovascular outcomes,
independent of glycemic control [1]. For example, thiazolidinediones
increase fluid retention and peripheral edema in diabetic subjects with
heart failure [2] whereas some dipeptidyl peptidase 4 (DPP-4) in-
hibitors increase the rate of hospitalization for heart failure [3]. The first
glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonist was
approved for clinical use in 2005 and results of several studies suggest
that native GLP-1 or degradation-resistant GLP-1R agonists may be
beneficial in subjects with ischemic cardiac injury or heart failure [4e
6]. The largest randomized controlled trial demonstrated that a
6 h infusion of exenatide significantly improved the myocardial salvage
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index and reduced infarct size relative to the ischemic area at risk in
human subjects with acute myocardial infarction (MI) [7].
Although pre-clinical studies demonstrate that GLP-1R agonists
preserve ventricular function and reduce infarct size [8,9], the
physiological importance of the endogenous GLP-1R for the response
to cardiac injury has not been elucidated. Furthermore, the surprising
demonstration that ventricular cardiomyocytes do not express the
GLP-1R [10] raises important questions about mechanisms linking
GLP-1R signaling to ventricular function and cardioprotection. We
have now examined the physiological importance of endogenous
GLP-1R signaling for the response to ischemic injury or doxorubicin-
induced cardiomyopathy in Glp1r deficient (Glp1r�/�) mice and in
newly generated Glp1rCM�/� mice with cardiomyocyte-specific
inactivation of the Glp1r. Surprisingly, global or cardiomyocyte-
specific disruption of GLP-1R signaling in mice does not influence
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the extent of injury or survival after MI or experimental
cardiomyopathy.
As GLP-1R agonists are administered to humans prior to or
following the development of ischemic myocardial injury, we also
studied the actions of GLP-1R agonists in mice when administered
before or after coronary artery ligation. Surprisingly, administration
of exendin-4 after the onset of MI did not modify infarct size or
survival. Unexpectedly, the GLP-1R agonist liraglutide continued to
produce robust cardioprotection in Glp1rCM�/� mice. Although the
cardiomyocyte GLP-1R was not required for liraglutide-mediated
increases in heart rate (HR), basal HR was significantly lower in
Glp1rCM�/� mice. Taken together, these findings demonstrate that
the cardiomyocyte GLP-1R is not essential for i) the endogenous
physiological response to ischemic or cardiomyopathic injury, ii)
GLP-1R-dependent cardioprotection or iii) the pharmacological GLP-
1R-dependent increase in HR. In contrast, basal signaling through
the atrial cardiomyocyte GLP-1R is essential for control of HR in
mice.

2. METHODS

2.1. Animal care
Animal experiments were carried out using protocols approved by
Mt. Sinai Hospital and The Toronto Centre for Phenogenomics (TCP;
Toronto, ON, Canada). Mice were housed under a 12-h light/dark
cycle in the TCP animal facility with free access to standard rodent
diet (2018, 18% kcal from fat; Harlan Teklad, Mississauga, ON,
Canada) and water, unless otherwise noted. Experiments were
carried out in male mice acclimatized to handling. Glp1r�/� mice
have been described [11]. To generate Glp1rCM�/� mice, Mer-
CreMer transgenic mice expressing tamoxifen-inducible Cre driven
by the a-myosin heavy chain (aMHC) promoter were bred with
floxed Glp1r mice [12]. Cre-induced inactivation of the Glp1r gene
was carried out via 6 intraperitoneal (i.p.) injections of tamoxifen
(50 mg/kg) over 8 days (Supplementary Figure 1). As induction of
Cre in cardiac myocytes induces a transient, reversible cardiomy-
opathy [13], mice were allowed 5 weeks to recover before
experimentation.

2.2. Permanent left anterior descending (LAD) coronary artery
occlusion
Experimental MI was induced via permanent ligation of the LAD cor-
onary artery in 10e12-week-old male Glp1r�/� mice and Glp1rþ/þ

littermates, or 16e20-week-old Glp1rCM�/� mice and their aMHC-Cre
littermates as described [14]. Cardiac examinations were performed
on all deceased mice. The presence of a large amount of blood or clot
around the heart and in the thoracic cavity, in addition to a perforation
of the infarct or peri-infarct area was indicative of cardiac rupture.

2.3. Experimental cardiomyopathy
Experimental cardiomyopathy was induced via single i.p. injection of
doxorubicin (20 mg/kg) in Glp1r�/� mice and Glp1rþ/þ littermates, or
in C57BL/6J mice [15]. Mice were followed for 10 days and hearts
from surviving mice underwent histological assessment, or analysis of
gene and protein expression.

2.4. Treatment with GLP-1R agonists
In subsets of experiments involving experimental MI or cardiomyopa-
thy, groups of mice were treated with either liraglutide (30 mg/kg i.p.
twice daily, Novo Nordisk), the GLP-1R agonist, exendin-4 (5 nmol/kg
i.p. twice daily, CHI Scientific), or saline. All injections took place
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between 7:00e8:00 am and 4:00e5:00 pm. To assess consequences
of GLP-1R activation before induction of ischemia, liraglutide was
administered twice daily for 1 week before MI [14]. To assess the
effects of activating the GLP-1R following induction of ischemia or
cardiomyopathy, exendin-4 injections were initiated concurrent with
induction of MI or cardiomyopathy.

2.5. Histology and assessment of left ventricle (LV) infarct scar
formation
Animals were anesthetized using avertin (250 mg/kg i.p. injection). The
chest was opened and an apical injection of 1 M KCl arrested the heart
in diastole. Hearts were perfusion-fixed with 4% buffered formalin at
physiological pressure, post-fixed in formalin, embedded in paraffin,
sectioned at 6 mm, and stained with Masson’s Trichrome or hema-
toxylin and eosin (H&E). Cardiac morphometry was performed with
Aperio ImageScope Viewer software (Aperio Technologies) using digital
planimetry [14,16]. Infarcted/scarred LV area was calculated as a % of
total LV area. Cardiac hypertrophy was quantified as the heart weight-
to or ventricular weight-to-body weight or tibia length ratio. LV atrial
natriuretic peptide (ANP) expression was determined via immunohis-
tochemistry utilizing anti-ANP (Santa Cruz) antibody.

2.6. Assessment of heart rate (HR) via telemetry
HR was assessed in conscious, freely moving mice via implantation of
radiotelemetry devices (PA-C10 from DSI) as previously described
[10]. Mice were allowed 1 week to recover following device im-
plantation prior to data collection. In some experiments, mice were
injected with liraglutide (30 mg/kg i.p.) or saline, or subjected to
fastingerefeeding.

2.7. Determination of plasma ANP
Plasma ANP levels were quantified using commercially available
enzyme-linked immunosorbent assays (ELISA) (Ray Bio, USA) [10].

2.8. Glucose tolerance
Oral and i.p. glucose tolerance tests were performed in fasted mice
using a glucose dose of 2 g/kg. During i.p. glucose tolerance testing,
mice were injected with either exendin-4 (24 nmol/kg), or saline,
15 min prior to glucose injection.

2.9. Plasma insulin
Plasma was collected from mice via tail bleed at 15 min post-glucose
administration during both oral and i.p. glucose tolerance, and plasma
insulin levels were determined by ELISA (Alpco Diagnostics).

2.10. Real time quantitative PCR
First-strand cDNA was synthesized from total RNA using the Super-
Script III synthesis system (Invitrogen, Carlsbad, CA). Real time PCR
was carried out with the ABI Prism 7900 Sequence Detection System
using TaqMan Gene Expression Assays (Applied Biosystems, Foster
City, CA). Relative mRNA transcript levels were quantified with the
2�DDCt method [17] using cyclophilin as an internal control. PCR
primers are shown in Supplementary Table 1.

2.11. Immunoblot analysis
Frozen powdered ventricular tissue (20 mg) was homogenized as
described [18] and following gel electrophoresis, immunoblotting was
carried out using antibodies listed in Supplementary Table 2. Immu-
noblots were visualized with the enhanced chemiluminescence
Western blot detection kit (Perkin Elmer) and quantified with Care-
stream Molecular Imaging Software (Kodak).
bH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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2.12. Statistical analysis
All values are presented asmean� SE (n observations). The significance
of differences was determined by a Kaplan Meier survival analysis, an
unpaired 2-tailed Student’s t-test, a two-way analysis of variance
(ANOVA), or a one-way ANOVA followed by a Bonferroni post-hoc analysis
where appropriate. Differences were considered significant when
P < 0.05.

3. RESULTS

3.1. Glp1r�/� mice do not exhibit enhanced susceptibility to
ischemia-induced mortality or experimental cardiomyopathy
Although the cardiovascular consequences of pharmacological activa-
tion of the GLP-1R have been extensively studied [8], little is known
about the endogenous physiological importance of basal GLP-1R
signaling for the response to ventricular injury. We first backcrossed
Glp1r�/� mice, originally on a CD1 background [11,19], for 6 genera-
tions on to the C57BL/6 background, and observed normal cardiac
structure in C57BL/6 Glp1r�/� mice (Supplementary Figure 2). To
determine whether loss of basal GLP-1R signaling impairs the response
to cardiac injury, Glp1r�/� and littermate Glp1rþ/þmice were subjected
to permanent occlusion of the LAD coronary artery. Although results with
Glp1r�/� mice trended towards increased mortality, these differences
were not statistically significant (Figure 1A). Levels of Tnfa and Ccl2
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Figure 1: Whole-body GLP-1R deficiency does not influence cardiovascular outcomes following LAD
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mRNA transcripts were reduced, whereas Gdf5 expression was
increased in ventricular RNA from Glp1r�/� mice (Supplementary
Figure 3), however no differences in LV infarct scar formation or car-
diac hypertrophy were detected (Figure 1B and C).
As GLP-1R agonists ameliorate the severity of experimental and clinical
ventricular dysfunction [4,20,21], we assessed whether loss of basal
GLP-1R signaling modified outcomes in mice with doxorubicin-induced
cardiomyopathy. Glp1r�/� mice exhibited no differences in survival
following doxorubicin administration (Figure 1D). Although the extent of
cardiac atrophy was attenuated (Figure 1E) and expression of
inflammation-associated genes such as Tnfa, Ccl2, Hmox1, and Tgfb2
was reduced in ventricles from Glp1r�/� mice (Supplementary
Figure 4), plasma levels of ANP (Figure 1F), LV ANP expression
(Figure 1G), and levels of Nppa and Nppb mRNA (Figure 1H) were
similar in Glp1r�/� vs. Glp1rþ/þ mice. Hence, whole body deletion of
the Glp1r does not impair the adaptive response to ischemic or car-
diomyopathic ventricular injury.

3.2. Systemic GLP-1R activation with exendin-4 does not modify
cardiovascular outcomes following induction of ischemia or
experimental cardiomyopathy
Treatment of rodents with GLP-1R agonists prior to induction of
ischemia produces robust cardioprotection [14], however it remains
unclear whether GLP-1R activation commenced after induction of
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ischemic injury is similarly beneficial in rodents in vivo [8]. Importantly,
exendin-4 (exenatide) has been administered to human subjects after
the onset of ischemic injury or MI, with promising or indeterminate
results [5,7,22]. Hence, we asked whether administration of exendin-4
to mice with ischemic cardiac injury might be similarly car-
dioprotective. Treatment of C57BL/6J mice with exendin-4 for 1 week
starting after LAD coronary artery ligation (5 nmol/kg i.p. twice daily, a
dose that improved glucose tolerance in separate groups of mice (data
not shown), but did not perturb body weight or random fed glycemia,
(Supplementary Figure 5) did not improve survival (Figure 2A), nor
improve MI-induced LV remodeling, as evidenced by similar LV infarct
scar formation and MI-induced cardiac hypertrophy (Figure 2B and C).
As both native GLP-1 and GLP-1R agonists such as exendin-4 have
yielded variable outcomes when administered in experimental
models and clinical trials of heart failure [6,21,23,24], we asked
whether exendin-4 would improve outcomes in mice with experi-
mental cardiomyopathy. Treatment of C57BL/6J mice with exendin-
4 for 1 week did not improve survival following doxorubicin-induced
cardiomyopathy (Figure 2D), nor the extent of cardiac atrophy
(Figure 2E). In contrast, the increase in LV Nppa mRNA transcripts in
saline-treated mice was absent in exendin-4-treated mice
(Figure 2F). Systemic exendin-4 treatment also reduced ventricular
inflammatory gene expression (Il1b and Hmox1) 48 h post-LAD
coronary artery occlusion (Supplementary Figure 6A), whereas
exendin-4 had less robust effects on ventricular or atrial inflam-
matory gene expression profiles in the setting of experimental
cardiomyopathy (Supplementary Figure 7A). Despite localization of
Glp1r expression to cardiac atria [10], exendin-4 did not produce
major changes in levels of atrial mRNA transcripts after LAD cor-
onary artery occlusion (Supplementary Figure 6B), or following
doxorubicin administration (Supplementary Figure 7B). Hence,
systemic GLP-1R activation produces modest changes in cardiac
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gene expression but does not modify outcomes after ischemic or
cardiomyopathic ventricular injury in WT mice.

3.3. Mice with cardiomyocyte-specific inactivation of the Glp1r
(Glp1rCM�/�) have normal cardiac structure
As Glp1r�/� mice may exhibit developmental or compensatory
adaptive metabolic changes that could indirectly influence their
response to cardiac injury [25e27], we generated mice with inducible
inactivation of the Glp1r in cardiac myocytes (Glp1rCM�/�;
Supplementary Figure 1). Tamoxifen-induction of Cre expression
resulted in w90% reduction in atrial Glp1r mRNA expression with no
change in lung or pancreas Glp1r mRNA expression in Glp1rCM�/�

mice (Figure 3A). Oral glucose tolerance (Figure 3B) was normal and
the glucoregulatory actions of exendin-4 (Figure 3C and D) were
preserved in Glp1rCM�/� mice, consistent with selective inactivation of
the Glp1r in cardiomyocytes. Cardiac structure (5 weeks after the last
tamoxifen injection) was normal (Figure 3EeG) indicating that selective
reduction of Glp1r expression in adult cardiomyocytes does not pro-
duce unexpected changes in cardiac chamber development or glucose
homeostasis.

3.4. Glp1rCM�/� mice do not exhibit enhanced mortality or adverse
LV remodeling after MI
To determine whether selective loss of the cardiomyocyte GLP-1R
impaired cardiomyocyte gene or protein expression or the response
to ischemic injury, we induced experimental MI by coronary artery
ligation in Glp1rCM�/� mice. Viable ventricular myocardium adjacent to
the site of infarct from Glp1rCM�/� mice 48 h post-LAD coronary artery
occlusion revealed few differences in expression of proteins previously
implicated in GLP-1R-dependent cardioprotection, with the exception of
heme-oxygenase 1 expression and 50 AMP activated protein kinase
phosphorylation, which were lower in Glp1rCM�/� mice (Figure 4).
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Similarly, RNA analyses did not reveal major differences in ventricular
expression of key genes involved in inflammation, extracellular matrix
remodeling, or natriuresis in Glp1rCM�/� mice, other than an exacer-
bation of the MI-induced increase in Ccl2, Mmp9, and Nppb mRNA
expression (Supplementary Figure 8AeC). In contrast, we observed
significant differential expression of genes important for inflammation
(Il-6), extracellular matrix remodeling (Mmp9, Timp1), and natriuresis
(Nppb), and attenuation of MI-induced increases in IL1b, Ccl2, Hmox1,
and Gdf15 (Supplementary Figure 8DeF) in atrial RNA from Glp1rCM�/�

hearts 48 h post-LAD coronary artery occlusion.
Despite multiple chamber-specific differences in mRNA and protein
expression, Glp1rCM�/� mice exhibited no alterations in survival
following LAD coronary artery occlusion (Figure 5A). Ventricular ANP
expression, an indirect indicator of heart failure was not dysregulated
(Figure 5B), and LV remodeling, assessed by cardiac hypertrophy
(ventricular weight/body weight ratios), LV infarct scar formation, LV
chamber diameter, and LV wall thinning (Figure 5CeG) were also
similar in Glp1rCM�/� vs. aMHC-Cre control littermate hearts. Hence
selective loss of the cardiomyocyte GLP-1R results in significant
changes in cardiac gene expression but has minimal impact on
MOLECULAR METABOLISM 3 (2014) 507e517 � 2014 The Authors. Published by Elsevier GmbH. This is an ope
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outcomes and the adaptive remodeling response after experimental
MI.

3.5. The cardiomyocyte GLP-1R is not required for the
cardioprotective actions of liraglutide
We previously demonstrated that GLP-1R activation with liraglutide
prior to MI produced robust cardioprotection in wild-type mice [14]. To
determine whether cardioprotective effects of systemic GLP-1R ago-
nists are mediated through the cardiomyocyte GLP-1R, we treated
Glp1rCM�/� mice and their aMHC-Cre littermates with liraglutide for 1
week (Figure 6A) with a dose (30 mg/kg i.p. twice daily) that does not
induce weight loss [14] (Supplementary Figure 9). Unexpectedly,
cardioprotection with liraglutide was as potent in Glp1rCM�/� mice as
in aMHC-Cre littermates (Figure 6B). Furthermore, liraglutide improved
cardiac hypertrophy (ventricular weight/body weight ratios), and
reduced LV infarct scar formation and LV wall thinning to a similar
extent in Glp1rCM�/� vs. aMHC-Cre mice (Figure 6CeG). These
findings demonstrate that cardiomyocyte GLP-1R activity is not
essential for physiological or pharmacological cardioprotective re-
sponses engaged by GLP-1R signaling.
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3.6. The cardiomyocyte GLP-1R controls basal HR
As the GLP-1R is predominantly expressed in the atria, and not the
ventricle, of rodents and primates [10,28,29], we asked whether atrial
GLP-1R expression, perhaps in a subset of pacemaker cells [29], might
be important for the pharmacological or physiological control of HR. As
GLP-1R agonists increase HR in rodents and humans [8], we assessed
HR after acute administration of liraglutide. Despite marked reduction
in atrial Glp1r expression, Glp1rCM�/� mice remained equally sensitive
to acute liraglutide-induced increases in HR, compared to responses
measured in aMHC-Cre control littermates (Figure 7AeD). As levels of
GLP-1 rise in the postprandial state, and HR increases following food
ingestion [30], we asked whether cardiomyocyte GLP-1R signaling
transduces a component of the meal-stimulated increase in HR.
Although HR increased briskly in control mice after refeeding, the HR
response to refeeding was similar in Glp1rCM�/� mice (Figure 7E).
Finally, we asked whether loss of cardiomyocyte Glp1r expression
might affect basal HR. Assessment of HR in freely moving conscious
mice via radiotelemetry revealed a significant reduction in basal HR in
Glp1rCM�/� mice (Figure 7F). Hence, while the atrial GLP-1R is not
required for the acute chronotropic response to liraglutide or refeeding,
selective loss of GLP-1R signaling in cardiomyocytes disrupts the
normal control of HR in mice.

4. DISCUSSION

Our results provide multiple new insights that redefine the pharma-
cology and physiology of GLP-1R-dependent actions in the cardio-
vascular system. First, complete loss of GLP-1R activity in Glp1r�/�
MOLECULAR METABOLISM 3 (2014) 507e517 � 2014 The Authors. Published by Elsevier GmbH. This is an ope
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mice has no impact on cardiovascular outcomes after experimental
MI or cardiomyopathy. Second, selective disruption of the car-
diomyocyte GLP-1R produces alterations in atrial gene expression
after experimental MI, however cardiac structure, left ventricular
remodeling, infarct size, and survival are not perturbed in Glp1rCM�/�

mice. Third, although clinical studies suggest GLP-1R agonists such
as exenatide may ameliorate ischemic cardiac injury when admin-
istered after the onset of ischemia, we did not observe improvement
in outcomes following exendin-4 administration to mice after LAD
coronary artery ligation. Fourth, despite putative benefits of GLP-1R
agonists in heart failure [8], whole body loss of Glp1r expression
does not modify outcomes after induction of cardiomyopathy with
doxorubicin, and activating GLP-1R signaling produced no improve-
ment in outcomes in doxorubicin-treated mice. Fifth, although the
cardioprotective actions of liraglutide in mice require the GLP-1R
[10,14], cardioprotection with liraglutide in mice with experimental
MI is independent of the cardiomyocyte GLP-1R. Sixth, whereas the
cardiomyocyte GLP-1R is not required for the increase in HR following
a) refeeding and b) liraglutide administration, basal HR is significantly
lower in Glp1rCM�/� mice.
Glp1r�/� mice studied in the C57BL/6 background exhibit normal
cardiac structure and function, and contrary to our initial hypothesis,
loss of the GLP-1R did not increase the susceptibility to ischemic or
cardiomyopathic injury. Although it is possible that studying larger
numbers of Glp1r�/� mice under conditions of insulin resistance,
obesity or experimental diabetes might have produced different out-
comes, we focused our immediate efforts on verifying this result in a
second mouse model enabling loss of GLP-1R signaling in the heart, To
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eliminate the possibility that germline inactivation of the Glp1r is
associated with subtle defects due to developmental compensation,
we defined key cardiovascular phenotypes in Glp1rCM�/� mice with
conditional inactivation of the Glp1r in adult mice. Notably, the
response to coronary artery occlusion was similar in Glp1rCM�/� vs.
aMHC-Cre littermate control mice. Hence, the highly concordant data
from Glp1r�/� and Glp1rCM�/� mice clearly demonstrate that loss of
the cardiomyocyte GLP-1R does not modify the susceptibility to
experimental cardiac injury.
The lack of physiological importance of the endogenous car-
diomyocyte GLP-1R in the setting of ischemia or doxorubicin-induced
cardiomyopathy was surprising given evidence demonstrating robust
cardioprotective properties of degradation-resistant GLP-1R agonists
[14,31e34]. Greatly complicating interpretation of the existing liter-
ature are reports illustrating cardioprotective actions of native GLP-1,
which may act through the known GLP-1 receptor, or through GLP-
1R-independent pathways via generation of GLP-1(9e36) or GLP-
514 MOLECULAR METABOLISM 3 (2014) 507e517 � 2014 The Authors. Published by Elsevier Gm
1(28e36) [4,32,35,36]. Importantly, data generated using native
GLP-1 or GLP-1(9e36) in the cardiovascular system cannot be
inferred to be relevant to mechanisms activated by degradation-
resistant GLP-1R agonists [8]. Indeed the available genetic evi-
dence using Glp1r�/� mice demonstrates that the key metabolic and
cardiovascular actions of exendin-4 and liraglutide are mediated
through the known GLP-1R [10,11,14,37].
A unifying explanation for our results and published literature may lie in
the demonstration [10,28,29,38], that the cardiac GLP-1R is localized
to atrial, and not ventricular cardiomyocytes. As the majority of
experimental models of MI and heart failure encompass direct insults
to the LV, basal endogenous atrial GLP-1R activity may not be
important for survival and function of ventricular cardiomyocytes.
Similarly, we showed that blood pressure or plasma ANP levels were
not substantially different in normotensive or hypertensive Glp1r�/� vs
Glp1rþ/þ mice [10]. Our new experiments extend these findings by
demonstrating that Glp1r�/� and Glp1rCM�/� mice do not exhibit
bH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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defective ANP responses following coronary artery occlusion or
doxorubicin-induced cardiomyopathy. Thus, while activation of atrial
GLP-1R signaling induces ANP secretion in hypertensive mice, the
increase in ANP levels during progression of MI and heart failure is
normal in the absence of a functional GLP-1R.
Multiple studies demonstrate that systemic administration of native
GLP-1 or exenatide [5,7,39] or GLP-1 infusion directly into the coronary
circulation produces cardioprotection [32,40]. Under some scenarios,
ANP itself exerts cardioprotective actions [41]. Surprisingly however,
the GLP-1R agonist liraglutide continues to exhibit robust car-
dioprotection following coronary artery occlusion in Glp1rCM�/� mice,
indicating that the atrial GLP-1R is not required for GLP-1R agonist-
mediated cardioprotection in vivo.
Our current data necessitates reassessment of how GLP-1R agonists
exert their cardioprotective actions [8,9,36]. It seems likely that GLP-1R-
dependent cardioprotection in vivo arises through indirect mechanisms,
perhaps through effects on metabolism, or changes in neural trans-
mission or blood flow. Evidence for the possible importance of indirect
metabolic changes arises from studies in rats treated with albiglutide
and subjected to ischemia-reperfusion injury; these hearts exhibited
increased myocardial carbohydrate oxidation and decreased fatty acid
oxidation [42], ametabolic profile associated with improved efficiency of
contractile function and consistent with indirect mechanisms trans-
duced through elevations in plasma insulin and activation of the cardiac
insulin receptor. Thus, we focused our initial studies in normoglycemic
non-diabetic Glp1rCM�/� mice for several reasons. First, the develop-
ment of hyperglycemia is associated with multiple metabolic and car-
diovascular abnormalities [43], which may be partially corrected by
administration of GLP-1R agonists, confounding attribution of direct vs.
indirect mechanisms. Second, the cardioprotective actions of GLP-1R
agonists are preserved in normoglycemic and diabetic mice and
humans [14,44]. Third, GLP-1R agonists markedly increase insulin
secretion under conditions of hyperglycemia, which may indirectly
activate myocardial signaling pathways [43]. Indeed, we observed a
significant increase in Akt/GSK3b phosphorylation in ventricular ex-
tracts from Glp1rCM�/� mice treated with a much higher 200 mg/kg
dose of liraglutide, consistent with increased insulin secretion and
activation of myocardial insulin signaling pathways (Supplementary
Figure 10). Notably, these effects were absent in Glp1r�/� mice and
restored in Pdx1-hGLP1R:Glp1r�/� mice (Supplementary Figure 10)
previously shown to exhibit selective restitution of GLP-1R agonist-
induced insulin secretion [45].
Our studies in normoglycemic animals raise important questions as to
whether systemic GLP-1R activation will similarly confer protection
against ischemic injury in obese, hyperglycemic and hyperinsulinemic
Glp1rCM�/� mice. Although actions of GLP-1R agonists to increase in-
sulin and enhance cardiac glucose uptake, or engage neural circuits
regulating cardiovascular function are important considerations [8,46],
these mechanisms would not explain the direct cardioprotective actions
ascribed to GLP-1R agonists in ischemia-reperfusion studies ex vivo [8].
Hence, we hypothesize that GLP-1R signaling in cardiac blood vessels,
perhaps in endothelial cells or smooth muscle cells, may also
contribute in part to modulation of blood flow and cardioprotection.
Indeed, Richards et al. used expression of a fluorescent reporter
protein under control of endogenous Glp1r regulatory sequences to
localize reporter expression within ventricular blood vessels in cells
that also-co-expressed smooth muscle actin [38]. A vascular target for
GLP-1 action in the heart would also be consistent with studies
demonstrating that GLP-1 increases microvascular blood volume and
microvascular muscle blood flow in rats [47] and recruits cardiac
muscle microvasculature in healthy humans [48]. Furthermore, GLP-1
MOLECULAR METABOLISM 3 (2014) 507e517 � 2014 The Authors. Published by Elsevier GmbH. This is an ope
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enhances both mesenteric and coronary blood flow [32,49]. Although
the actions of native GLP-1 on blood vessels may potentially be
ascribed to GLP-1(9e36), the degradation-resistant GLP-1R agonist
exenatide robustly increased myocardial blood flow in human subjects
with T2D [50]. Hence it seems likely that clinically utilized degradation-
resistant agonists such as exenatide, liraglutide, and lixisenatide, may
modulate myocardial blood flow through the known GLP-1R, however
whether such increases in blood flow arise independent of changes in
heart rate is difficult to ascertain.
The localization of the GLP-1R to sinoatrial nodal cells in primates
[29], raises the possibility that GLP-1R agonists increase HR through
direct activation of atrial pacemaker cells. Nevertheless, we did not
observe differences in the extent of HR elevation following liraglutide
administration in control vs. Glp1rCM�/� mice. The mechanisms
underlying GLP-1R-dependent increases in HR in rodents are com-
plex, and involve integration of neural signals from both the sym-
pathetic and parasympathetic nervous system [51,52]. Hence, it may
not be surprising that GLP-1R agonists exemplified by liraglutide
remain capable of increasing HR in mice despite marked attenuation
of atrial cardiomyocyte GLP-1R signaling. Nevertheless, our findings
reveal an important role for basal cardiomyocyte GLP-1R signaling in
regulation of chronotropic activity as we observed a significant
reduction in baseline HR in Glp1rCM�/� mice. Hence future studies
should aim to elucidate how atrial GLP-1R activity provides signals
that integrate with neural and cardiac mechanisms linked to overall
control of HR in vivo.
In summary, although GLP-1R agonists produce multiple indirect and
direct cardioprotective actions in the cardiovascular system, complete
whole body inactivation of the GLP-1R in Glp1r�/� mice, or selective
reduction of cardiac GLP-1R expression in Glp1rCM�/� mice does not
impair the physiological response to experimental cardiac injury.
Moreover, GLP-1R agonists still induce potent cardioprotection
despite ablation of cardiomyocyte GLP-1R activity. Furthermore,
although the cardiomyocyte GLP-1R is not required for increases in
HR following systemic GLP-1R activation, basal HR is significantly
reduced in Glp1rCM�/� mice. Our findings reorient the field towards
future studies of a) indirect mechanisms linking GLP-1R activation in
non-cardiomyocyte cell types to robust cardioprotection and
enhancement of ventricular function and b) the importance of atrial
GLP-1R signaling for control of HR, in both pre-clinical and clinical
studies.
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Supplementary Figure 1 

Day 1 Day 2 

am injection 
tamoxifen 
(50 mg/kg) 

Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

pm injection 
tamoxifen 
(50 mg/kg) 

am injection 
tamoxifen 
(50 mg/kg) 

pm injection 
tamoxifen 
(50 mg/kg) 

am injection 
tamoxifen 
(50 mg/kg) 

pm injection 
tamoxifen 
(50 mg/kg) 

B 

A 

Cre ER 

hsp90 

hsp90 

Cre ER 

+ 4-OH-Tamoxifen 

5’ 3’ 

1 5 7 8 6 13 

5’ 3’ 

1 5 8 13 

αMHC Promoter 
Cre ER 

Floxed Glp1r KO Glp1r 

Supplementary Figure 1. Use of a tamoxifen inducible α-myosin heavy chain (αMHC) Cre expressing promoter to 
reduce Glp1r expression in cardiomyocytes via cre-lox technology. 
A: Cells expressing the αMHC promoter express Cre flanked by mutated estrogen receptor ligand-binding domains 
bound to heat shock protein 90 (hsp90) in the cytoplasm that are sensitive to activation with the selective estrogen 
receptor antagonist, tamoxifen. Upon binding of tamoxifen, hsp90 dissociates from Cre, allowing Cre to translocate 
from the cytoplasm to the nucleus, enabling Cre-mediated excision of loxP flanked sequences (loxP sites indicated via 
black triangles) to generate gene knockdown. B: We knocked down the Glp1r specifically in αMHC-Cre expressing 
cells via 6 i.p. injections of tamoxifen (50 mg/kg) spread across 8 days. On day 1 mice were injected in the morning, 
while the injection took place in the afternoon on day 2. No injection took place on day 3, whereas mice were injected 
again in the morning on day 4 and in the afternoon on day 5, followed by no injection on day 6, with the final injections 
taking place during the morning on day 7 and the afternoon of day 8. 



Supplementary Figure 2 
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Supplementary Figure 2. Normal cardiac structure in 2-month-old Glp1r-/- mice in the C57BL/6J background. 
A: Representative H&E heart cross sections depicting normal LV structure in 2-month-old Glp1r-/- mice (n = 3). B: LV 
internal diameter (LVID) and C: LV posterior wall thickness (LV PWT). Values represent mean ± SE. 
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Supplementary Figure 3 
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Supplementary Figure 3. Ventricular mRNA expression profiling from Glp1r-/- mice and wild-type littermates following 
myocardial infarction. 
Ventricular RNA was isolated to determine mRNA expression of Il1b, Il6, Tnfα, Tgfβ2, Ccl2, Hmox1, Mmp9, Timp1, 
Gdf5, Gdf15, Nppa, and Nppb from Glp1r-/- mice and their wild-type littermates at 48 h post-LAD coronary artery 
occlusion (n = 5). Values represent mean ± SE.  The significance of differences was determined by  an unpaired, 2-
tailed Student’s t-test .*Significantly different from wild-type (WT) littermate. 
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Supplementary Figure 4. Ventricular and atrial mRNA expression profiling from Glp1r-/- mice and their wild-type 
littermates following experimental cardiomyopathy. 
A: Ventricular and B: atrial RNA was used to determine mRNA expression of Hmox1, Ccl2, Mmp9, Il6, Tgfβ2, and Tnfα 
from Glp1r-/- mice and their wild-type littermates at 10 days post-doxorubicin injection (n = 3-5). Values represent mean 
± SE.  The significance of differences was determined by a two-way ANOVA followed by a Bonferroni post-hoc 
analysis.*Significantly different from sham counterpart. #Significantly different from corresponding wild-type (Glp1r+/+) 
littermates. 
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Supplementary Figure 5 

-1 1 3 5 7 9

6

8

10

-1 1 3 5 7 9
25

30

35

40

1 3 5 7 9 
Days 

-1 1 3 5 7 9 
Days 

-1 

B
od

y 
W

ei
gh

t (
g)

 

40 

35 

30 

25 

B
lo

od
 G

lu
co

se
 (m

M
) 

10 

8 

6 

4 

Supplementary Figure 5. Systemic GLP-1R activation with exendin-4 does not affect body weight and random fed 
glycemia. 
A: Body weight change in PBS (phosphate buffered saline) and exendin-4 (5 nmol/kg BW i.p., twice daily)-treated 
C57BL/6J mice over 9 days following permanent LAD coronary artery occlusion (n = 5-8). B: Random fed glycemia in 
PBS- and exendin-4-treated C57BL/6J mice over 9 days following permanent LAD coronary artery occlusion (n = 5-8). 
Values represent mean ± SE. 
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Supplementary Figure 6 

Supplementary Figure 6. Ventricular and atrial mRNA expression profiling from exendin-4 vs PBS-treated C57BL/6J 
mice subjected to permanent LAD-ligation induced MI. 
A: Ventricular and B: Atrial RNA was used to determine expression of Il1b, Il6, Tnfα, Tgfβ2, Ccl2, Hmox1, Mmp9, 
Timp1, Gdf5, Gdf15, Nppa, and Nppb from PBS and exendin-4 (5 nmol/kg BW i.p., twice daily)-treated C57BL/6J mice 
at 48 h post-LAD coronary artery occlusion (n = 5-6). Values represent mean ± SE.  The significance of differences 
was determined by a two-way ANOVA followed by a Bonferroni post-hoc analysis.*Significantly different, Sham vs. MI; 
#Significantly different from corresponding PBS-treated counterpart. 
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Supplementary Figure 7 
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Supplementary Figure 7. Ventricular and atrial mRNA expression profiling from PBS vs. exendin-4 treated C57BL/6J 
mice following doxorubicin (doxo)-induced cardiomyopathy. 
A: Ventricular and B: Atrial RNA was used to determine expression of Hmox1, Ccl2, Mmp9, Il6, Tgfβ2, and Il1b from 
PBS- and exendin-4 (5 nmol/kg BW i.p., twice daily)-treated C57BL/6J mice at 10 days post-doxorubicin injection (n = 
4-5). Values represent mean ± SE. 
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Supplementary Figure 8 

* 

* * * 
# # # 

# 

* * * 

* * * * # * * 
* * 

# 

* # 

* * 

Supplementary Figure 8. Ventricular and atrial mRNA expression profiling from Glp1rCM-/- mice and their αMHC-Cre 
littermates subjected to permanent LAD-ligation induced MI. 
A: Ventricular RNA was used to determine expression of the inflammatory markers Il1b, Il6, Tnfα, Tgfβ1, Tgfβ2, Ccl2, 
Hmox1, and Gdf15 in Glp1rCM-/- mice and their αMHC-Cre littermates at 48 h post-LAD coronary artery occlusion (n = 
3-4). B: mRNA transcripts for matrix remodeling factors Mmp9 and Timp1, and C: the natriuretic peptides Nppa and 
Nppb were also determined from ventricular RNA extracts from Glp1rCM-/- mice and their αMHC-Cre littermates at 48 h 
post-LAD coronary artery occlusion (n = 3-4). D: Atrial RNA was similarly analyzed for expression of the inflammatory 
markers Il1b, Il6, Tnfα, Tgfβ1, Tgfβ2, Ccl2, Hmox1, and Gdf15 in Glp1rCM-/- mice and their αMHC-Cre littermates at 48 
h post-LAD coronary artery occlusion (n = 3-4). E: mRNA transcripts for the matrix remodeling factors Mmp9 and 
Timp1, and F: the natriuretic peptides Nppa and Nppb were also determined from atrial RNA from Glp1rCM-/- mice and 
their αMHC-Cre littermates at 48 h post-LAD coronary artery occlusion (n = 3-4). Values represent mean ± SE.  The 
significance of differences was determined by a two-way ANOVA followed by a Bonferroni post-hoc 
analysis.*Significantly different from sham counterpart. #Significantly different from corresponding αMHC-Cre 
littermate. 
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Supplementary Figure 9 
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Supplementary Figure 9. Systemic GLP-1R activation with liraglutide treatment does not significantly affect body 
weight. 
A: Body weight change in PBS and liraglutide (30 µg/kg BW i.p. twice daily) treated Glp1rCM-/- mice and their αMHC-
Cre littermates over 7 days (n = 10-16). B: Random fed glycemia in PBS and liraglutide (30 µg/kg BW i.p. twice daily) 
treated Glp1rCM-/- mice and their αMHC-Cre littermates over 7 days (n = 10-16). Values represent mean ± SE.  The 
significance of differences was determined by a two-way ANOVA followed by a Bonferroni post-hoc 
analysis.*Significantly different from corresponding PBS treated counterpart. 
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Supplementary Figure 10 

Supplementary Figure 10. Systemic GLP-1R activation with liraglutide increases ventricular Akt/GSK3β signaling. 
A: Akt phosphorylation, and B: GSK3β phosphorylation in Glp1rCM-/- mice and their αMHC-Cre littermates following a 1 
week treatment with liraglutide (200 µg/kg BW i.p. twice daily)(n = 3-4). C: Akt phosphorylation, and D: GSK3β 
phosphorylation in Glp1r-/- and Pdx1-hGLP1R:Glp1r-/- mice following a 1 week treatment with liraglutide (200 µg/kg BW 
i.p. twice daily)(n = 4). Pdx1-hGLP1R:Glp1r-/- mice exhibit selective restoration of functional GLP-1R expression in islet 
beta cells of Glp1r-/- mice, thereby enabling examining the contribution of GLP-1R-dependent insulin secretion in mice 
that otherwise have no functional Glp1r expression outside beta cells (Lamont et al J Clin Invest. 2012 Jan 3;122(1):
388-402). Due to the enhanced insulin levels and activation of cardiomyocyte insulin signaling pathways seen with this 
higher 200 µg/kg dose of liraglutide, we used a much lower dose, 30 µg/kg for all other experiments. Values represent 
mean ± SE.  The significance of differences was determined by a two-way ANOVA followed by a Bonferroni post-hoc 
analysis.*Significantly different from corresponding PBS treated counterpart. 
 

Glp1r-/- 
 

Pdx1-hGLP1R: 
Glp1r-/-  



Supplementary Table 1. List of Real-Time Primers 

 

Primer Set ABI Catalog # Amplicon Length 

Ccl2 Mm00441242_m1 74 

Gdf5 Mm00433564_m1 74 

Gdf15 Mm00493434_m1 134 

Glp1r Mm01351007_m1 93 

Hmox1 Mm00516005_m1 69 

Il1b Mm01336189_m1 63 

Il6 Mm00446190_m1 78 

Mmp9 Mm00442991_m1 76 

Nppa Mm01255748_g1 67 

Nppb Mm01255770_g1 68 

Ppia Mm02342430_g1 148 

Timp1 Mm00441818_m1 90 

Tnf Mm00443258_m1 81 

Tgfb1 Mm01178820_m1 59 

Tgfb2 Mm00436955_m1 82 

 

  



Supplementary Table 2      Antibodies used for Western blot analyses 

 

Anti-Akt (Cell Signaling Technologies) 
Anti-phosphoSerine-473 Akt (Cell Signaling Technologies) 
Anti-GSK3 (Cell Signaling Technologies) 
Anti-phosphoSerine-9 GSK3 (Cell Signaling Technologies) 
Anti-AMPK (Cell Signaling Technologies) 
Anti-phosphoThreonine-172 AMPK (R&D Systems) 
Anti-nuclear respiratory factor 2 (Nrf2, Santa Cruz) 
Anti-peroxisome proliferator activated receptor β/δ (PPARβ/δ, Santa Cruz) 
Anti-heme-oxygenase-1 (HO-1, Stressgen) 
Anti-heat shock protein 90 (hsp90, BD Biosciences)  
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