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ABSTRACT

Glucagon-like peptide-1 {GLP-1) released from the intestine is a
potent stimuiator of glucose-dependent insulin secretion. To elucidate
the factors regulating GLP-1 secretion, we have studied the enteroen-
docrine GLUTag cell line. GLP-1 secretion was stimulated in a dose-
dependent fashion by activation of protein kinase A or C with fors-
kolin or phorbol 12,13-dibutyrate, respectively (by 2.3 + 0.5-fold at
100 M and 4.3 + 0.6-fold at 0.3 uM, respectively; P < 0.01-0.001), Of
the regulatory peptides tested, only glucose-dependent insulinotropic
peptide stimulated the release of GLP-1 (by 2.3 = 0.2-fold at 0.1 un;
P < 0.001); glucagon was without effect, and paradoxically, the in-
hibitory neuropeptide somatostatin-14 increased secretion slightly
(by 1.6 = 0.3-fold at 0.01 uM; P < 0.05), In tests of several neuro-
fransmitters, only the cholinergic agonists carbachol and bethanechol
stimulated peptide secretion in a dose-dependent fashion (by 2.3 =

0.5-and 1.7 x 0.3-fold at 1000 uM; P < 0.05-0.001); the B-adrenergic
agonist isoproterenol and the chloride channel inhibitor y-aminobu-

" tyrie acid did not affect release of GLP-1. Long chain monounsaty-

rated fatty acids (18:1), but not saturated fatty acids (16:0), also
stimulated the release of GLP-1 {by 1.7 + 0.1-fold at 150 uM; P <
0.001). Consistent with the presence of a cAMP response element in
the proglucagon gene, activation of the protein kinase A-dependent
pathway with forskolin increased proglucagon messenger RNA tran-
seript levels by 2-fold (P < 0.05); glucose-dependent insulinofropic
peptide and phorboel 12,13-dibutyrate were without effect. Therefore,
by comparison with results obtained using primary L cell caltures or
in vivo models, GL.UTag cells appear to respond appropriately to the
regulatory mechanisms controlling intestinal GLP-1 secretion. (En-
docrinology 189: 4108-4114, 1998)

GLUCAGON-LIKE peptide-1 (GLP-1) is a potent stim-
ulator of glucose-dependent insulin secretion. Ad-
ministration of GLP-1 to patients with type II diabetes nor-
malizes both fasting and postprandial glycemia (1-13}, not
only through stimulation of insulin release, but also through
concomitant inhibition of glueagon secretion (5,9, 11, 13) and
gastric motility (5, 14) and, possibly, enhancement of insulin
sensitivity (8, 15, 16). GLP-1 is normally synthesized and
secreted by the intestinal L cell (17-21}; thus, stimulation of
endogenous secretion represents an alternative approach to
increasing levels of GLP-1 in type II diabetes. It is therefore
essential that the factors regulating GLP-1 release from the L
cell be elucidated.

A number of in vitro cell culture systems have been de-
veloped as models of the intestinal L cell, each of which has
both advantages and drawbacks. For example, fetal rat in-
testinal cell (FRIC) cultures are heterogeneous in their ceil
population, although they have proven to be an excellent
model of the rat L cell otherwise, releasing GLP-1 in response
to a wide variety of different signal transduction pathways
and extracellular mediators (18, 20-24), FRIC cells have also
been used for studies of changes in proglucagon messenger
RNA (mRNA) transcript levels (18), although their hetero-
geneity has proven to be limiting for more detailed molecular
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analyses of proglucagon gene expression. An alternative
model, the isolated canine L cell (25-27), provides a more
homogeneous cell population, but this culture system re-
quires centrifugal elutriation to prepare and is therefore rel-
atively expensive. A secretin tumor cell line (STC-1) that
secretes GLP-1 has also been used as an L cell model (28);
however, STC-1 cells are poorly differentiated and multipo-
tential. Hence, the similarity of this intestinal S cell model to
the GLIP-1-producing L cell is unclear.

The paucity of L cell models encouraged us to develop an
L celtline (GLUTag) from intestinal endocrine tumors arising
in the large bowel in proglucagon-simian virus 40 large T
antigen transgenic mice (29). GLUTag cells express the pro-
glucagon gene at high levels and process proglucagon to a
number of proglucagon-derived peptides, including GLP-1,
GLUTag cells have been demonstrated to secrete GLP-1 in
response to intracellular stimulators of the protein kinase A
(PKA) and protein kinase C (PKC) pathways, such as fors-
kolin and phorbol esters, respectively (29). As FRIC cultures
also exhibit regulated GLP-1 secretion in response to acti-
vation of PKA- and PKC-dependent pathways (18, 20-24),
we hypothesized that the GLUTag cell line would be a good
model for further studies of GLP-1 release in response to a

variety of potential secretagogues.

Materials and Methods
Reagents

Forskolin, isobutylmethylxanthine (IBMX), phorbdl 12,13-dibutyrate
(PIXBU), a-ketoisocaproic acid {KIC), glucose-dependent insulinotropic
peptide (GIP), glucagon, isoproterenol, somatostatin-14 ($14), carbachol,
and y-aminobutyric acid {GABA) were gifts from Eli Lilly Co. {India-
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napolis, IN). Bethanechol was purchased from Merck Frosst Canada
(Kirkland, Canada), and tissue culture reagents were obtained from Life
Technologies (Burlington, Canada). Oleic (18:1) and palmitic (16:0) acids
and phorbol 12-myristate-13-acetate (PMA) were obtained from Sigma
Chemical Co. (St. Louis, MO). To enhance fatty acid solubitity (30, 31),
stock solations were prepared in dimethylsulfoxide and then diluted
1:1000 into serum (albumin)-containing tissue culture medium,

Cell culture

GLUTag ceils were grown in DMEM {low glucose) containing 106%
{vol/vol) FBS, as previously described (29). The medium was changed
every 3-4 days. Cells were then trypsinized, plated in 24-well cultures
plates, and allowed to reach 60-80% confluence. On the day of the
experiment, cells were washed twice with HBSS and incubated with test
agents in DMEM containing 0.5% (vol/vol) FBS for 2 h, Each experiment
was repeated on a minimum of two different occasions to make at least
n = 4,

FRIC cultures were prepared from term fetal rat intestines, as pre-
viously described (18, 20-24). In brief, intestines from one litter of rats
were pooled to make n = 1, and the cells were dispersed by incubation
with collagenase (40 mg/dl; SigmaBlend Type H, Sigma Chemical Co.),
hyaluronidase (40 mg/dl; type 11, Sigma Chemical Co.), and deoxyri-
vonuclease 1 (5 mg/dl; Sigma Chemical Co.). Cells were plated at a
density of (.6 fetal rat intestines/60-mm dish in DMEM {(high glucose)
containing 5% {vol/vel) FBS, 5¢ FU/mi penicillin, and 50 pg/ml strep-
tomycin and were allowed to recover overnight. Cells were then washed
with HBSS and incubated for 2 h with test agents in DMEM (low glucose)
containing penicitlin, streptomycin, and 20 pU/ml insulin.

Peptide extraction and analysis

At the end of the incubation period, medium was collected, centri-
fuged to remove any floating cells, and made to 0.1% (vol/vel) with
triflucroacetic acid. Celis were homogenized in 1 N HCI containing 5%
(vol/vol) HCOOH, 1% (vol/vol) trifiucroacetic acid, and 1% (vol/val)
NaCl. Peptides and small proteins were then extracted from cells and cell
medium by passage through a cartridge of C,, silica (Sep-Pak, Waters
Associates, Milford, MA). We have previously reported that this meth-
odology affords a greater than 88% recovery of intact proglucagon-
derived peptides (PGDPs) (22, 23). Samples were subjected to RIA for
GLP-1-{36)NH, using the GLP-1-(7-36}NH, antiserum from Affinity
Research {Nottingham, UK) that recognizes GLP-1(7-36)NH, and GLP-
1-{1-36)NH, equally. This antiserum does not cross-react with Gly-
extended forms of GLP-1 (19, 32). Previous studies have demonstrated
that GLP-1-(7-36)NH, is the predominant form of GLP-1 synthesized by
GLUTag ceils (29).

We have previously demonstrated that GLP-1 secretion by FRIC
cultures occurs in parallel with that of other PGDPs, most notably
glucagon-like immunoreactivity {GLI) (20, 21). Therefore, as in previous
studies (18, 20-24), FRIC cultures were subjected to RIA for changes in
GLI secretion using antiserum K4023 {Biospecific, Emeryville, CA).

RNA extraction and analysis

Cells were incubated with test agents for 12 I, after which total
celiular RNA was isolated by the guanidium-isothiocyanate method
(33). Total RNA was subjected to electrophoresis using a 1% (wt/vol}
agarose-formaldehyde gel, and the gel was stained with ethidium bro-
mide to assess the migration and integrity of the RNA. RNA was then
transferred onto a nylon membrane, fixed by exposure to UV light, and
hybridized using a full-length complementary DNA {cDNA) probe for
proglucagon, as previously described (29). To controi for loading and
transfer efficiency, the blots were rehybridized with a cDNA for 18
ribosomal RNA, -

Data analysis

Secretion was calculated as the percentage of the total cell content of
peptide (GLP-1 or GLI) that was found in the medium {100 X medium
peptide/(medium + cell peptide)]. The total content of GLP-1 in control
GLUTag cultures (medium plus cells) was 1.9 % 0.2 ng/weli (n = 10),
and this was not altered by treatment with high doses of any of the test

4109

agents, Under control conditions, 85 = 0.8% (n = 10) of the total cell
content was released into the medium during the 2-h incubation period.
Statistical differences were determined by ANOVA using n-1 custom
hypatheses tests on an SAS program {Statistical Analysis Systems, Cary,
NC) for IBM computers.

Results

Activation of PKA- and/or PKC-dependent pathways is
known to stimulate intestinal PGDP secretion from FRIC
cultures (18, 20, 21, 23} and isolated canine L cells (25, 26).
Activation of the PKA-dependent pathway with forskolin
also stimulated dose-dependent increases in the release of
GLP-1 from GLUTag cells {Fig. 1). The forskolin response
was linear within the dose range tested, reaching 2.3 + 0.5-
fold of contrel values at 100 uM (P < 0.01). Treatment of

- GLUTag cells with the cAMP phosphodiesterase inhibitor,

IBMX, similarly increased GLP-1 release, to a maximum of
186 * 37% of the control value (P < 0.05) at 10 um (Fig. 1).
GLP-1 secretion was also stimulated by treatment with
PDBU; the response to this phorbol ester was highly signif-
icant, reaching 426 * 61% of the control value at 0.3 pM
(P << 0.001). Treatment with a second photrbol ester, PMA (1
um), also increased peptide release, to 1.7 = 0.2-fold of the
control value (P < 0.001), whereas down-regulation of PKC
via 24-h pretreatment with PMA completely abrogated this
response (91 * 9% of the control value; Fig. 1). In contrast to
the PKA and PKC pathways, incubation with KIC decreased
the release of GLP-1 in a biphasic fashion, with inhibition
occurring at low (10-30 pm; P < 0.05-0.01), but not higher
(100-300 um), concentrations, KIC is an aminc acid metab-
olite that has been reported to stimulate phospholipase C in
islet cells (34). As the effect of KIC on FRIC cultures has not
previously been reported, a similar dose-response curve was
tested in this system (Fig. 2). KIC had no effect on PGDP
secretion by FRIC cultures, although the positive control
(forskelin plus IBMX) indicated that the cells were respon-
sive to secrefagogues.

The intestinal L cell is known to be modulated by a variety
of hormones in the FRIC culture model (24). Thus, to assess
the effects of regulatory peptides on GLP-1 secretion,
GLUTag cells were incubated with GIP, glucagon, or S14
(Fig. 3). GIP increased GLP-1 secretion in a dose-dependent
fashion, with a significant increment to 227 * 24% of the
control value at 0.1 um (P < 0.001). GLUTag cells were
unresponsive to the structurally related peptide, glucagon, at
all doses tested; however, GLP-1 release was increased in
response to treatment with the highest dose of 514 (.01 g
P < 0.05).

Treatment of GLUTag cells with the cholinergic agonist
carbachol induced GLP-1 release at concentrations of 500-
1000 pm (P < 0.05-0.001), but not at lower doses (Fig. 4). As
FRIC cultures have previously been found to be sensitive to

the muscarinic agonist bethanechol (24), this agent was also

tested with GLUTag cells and was found to stimulate GLP-1
release in the same dose range as carbacho] (P < 0.05). Al-
though the incremental response to 1000 um bethanechol
appeared to be reduced compared with that for 1000 um
carbachol, this difference did not reach statistical signifi-
cance. GLP-1 secretion was not altered by treatment of
GLUTag cells with either isoproterenol or GABA. Studies in
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Fic. 2. Secretion of GLI by FRIC cultures in response to incubation
for 2 h with forskolin ptus IBMX (tréiangle; 10 M each) or different

. doses of KIC (closed circles) or GABA (open circles; n = 4 each).

Secretion into the medium was normalized to the total cell content of
the culture well and is expressed as a percentage of the control value.
*, P < 0,05 vs. paired controls.

FRIC cultures similarly indicated a lack of effect of GABA on
the L cell {Fig. 2).

ERIC cultures have previously been shown to secrete
GLP-1 in response to long chain monounsaturated, but not
long chain saturated, fatty acids (21). GLUTag cells were
therefore also tested for responsiveness to oleic (18:1) and
palmitic (16:0) acids (Fig. 5). Treatment with the monoun-
saturated fatty acid stimulated GLP-1 secretion by 1.7 =
0.1-fold (P < 0.001) at a dose of 150 jem, whereas the saturated
fatty acid appeared to have either a slight inhibitory or no
effect.

To determine whether physiclogical agents that stimu-
lated GLP-1 secretion were also coupled to activation of
proglucagon gene expression, GLUTag cells were incubated
for 12 h in the presence of 0.1 um GIP, after which total
cellular RNA was isolated for Northern analysis. The results
of this experiment demonstrated that, despite the stimula-
tory effects of GIP on GLP-1 secretion in the same experi-
ment, this peptide did not stimulate proglucagon gene ex-
pression (Fig. 6). In paired control experiments, forskolin/
IBMX treatment increased the levels of proglucagon mRNA
transcripts (by 2-fold; P < 0.05), whereas PDBU was without
effect,

Discussion

Previous in vitro studies on GLP-1 secretion have been
restricted in their scope due to various limitations of the
available systems. The development of the enteroendocrine
GLUTag cell line has now permitted analysis of this system
as a model of the intestinal L cell. Release of GLP-1 by
GLUTag cells was increased by intracellular activation of
both PKA-dependent (with forskolin or IBMX) and PKC-

Fig. 1. Secretion of GLP-1 by GLUTag cells in response to incubation
for 2 h with different deses of forskolin {closed circles; n = 7), IBMX
{open circles;n = 5), PDBU (n = 7), or KIC (n = 6). Cells treated with
1 us PMA (n = 8) were exposed to either culture medium alone or to
1 uv PMA (pretreatment) for 24 h before the experimental period.
Secretion into the medium was normalized to the total cell content of
the culture well and is expressed as a percentage of the control value,
*, P < 0.05; ¥, P < 0.01; ***, P < 0.001 (vs. paired controls),
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controls)

dependent (with PDBU or PMA) pathways. Similar studies
inboth FRIC {18, 20, 21, 23) and isolated canine L cell (25, 26)
cultures indicated the importance of these pathways in the
regulation of intestinal PGDP secretion. The results of the
present study extend these findings by the demonstration
that treatment with the potential phospholipase C activator,
KIC, does not enhance PGDP secretion by either FRIC or
GLUTag cells and, indeed, may actually inhibit secretion in
this cell line. It must be noted, however, that previous studies
with KIC in islet cells used doses 100-fold greater than those
used in the present study (34}. Thus, a stimulatory effect of
KIC at such high concentrations cannet presently be pre-
cluded. Nonetheless, the results of the present study indicate
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that major intracellular pathways determining GLP-1 secre-
tion by the L cell appear to be linked to PKA and PKC,

Several regulatory peptides that activate PKA-dependent
pathways through the seven-transmembrane domain, G pro-
tein-linked receptors were tested for their effects on GLP-1
release by GLUTag cells, including GIP (35) and glucagon
(36). Ofthese, only GIP was found to stimulate GLP-1 release;
glucagon was without effect on the GLUTag cells, consistent
with the results of studies using FRIC cultures (24). Studies
using models as diverse as FRIC cultures (20, 24), isolated
perfused ratileum (37, 38), and the anesthetized rat (39), have
all indicated that GIP can stimulate secretion by the rat in-
testinal L cell. Interestingly, this effect appears to be species
specific, as the human L cell is not stimulated by GIP i vive
{1, 4). Very recently, we demonstrated that the effects of
physiological concentrations of GIP on the rat L cell in vivo
are exerted indirectly, through the vagus nerve (40}. At su-
praphysiological concentrations, however, the effects of GIP
on the L cell are not prevented by vagotomy. Thus, our
finding that the GLUTag cells are responsive to GIP at rel-
ative high concentrations only (0.03-0.1 pm) is consistent
with the in vive sensitivity of the L cell to this peptide.

In keeping with a role for the vagus in modulating GLP-1
release in the rat in vive, both carbachol and bethanechol were
found to stimulate peptide secretion by GLUTag cells at
doses of 500-1000 um. The dose-response curve for these
effects was identical to that of a previous study using be-
thanechol with FRIC cultures (24). However, in the perfused
rat ileum model, cholinergic agonists stimulate the release of
GLP-1 at substantially lower concentrations (10-100 um)} (37,
38). The reasons for the differences between the two in vifro
models and the in situ setting are not clear; however, the
possible involvement of other mediators cannot be dis-
counted in the perfused rat ileumm model. Nonetheless, a
cholinergic pathway does appear to be important for GLP-1
secretion in humans, as atropine treatment prevents GLP-1
secretion during an oral glucose tolerance test (41). Interest-
ingly, this effect is also species specific, as carbachol is ac-
tually inhibitory to the canine L cell in vitro (25, 26). Finally,
as Dbethanechol acts through muscarinic receptors only,
whereas carbachol binds to both muscarinic and nicotinic
receptors, the present findings suggest a role for a muscarinic
receptor in the regulation of GLI-1 secretion. Although the
secretin tumor (STC-1) cell ling is not a true model of the L
cell, studies using these cells have indicated an involvement
of the M3 receptor subtype in modulating GLP-1 release (28).
Further investigations to determine the receptor subtype ex-
pressed by the GLUTag cells are therefore clearly warranted.

In contrast to the stimulatory effects of muscarinic agonists
on both FRIC cultures and GLUTag cells, other neuromodu-
fators, including the B-adrenergic agonist isoproterenol and
the chloride channel inhibitor GABA, had no effect on pep-

‘tide secretion in these culture systems (present data and Ref.

24). These findings are consistent with those reported for the
perfused rat ileum (37, 38). However, as for the regulation by
other secretagogues, the lack of effect of the p-adrenergic
agonist is species dependent, as it has been reported that the
canine L cell is stimulated by epinephrine (25, 26),

The intestinal neuropeptide 514 is a known inhibitor of the
L cell in FRIC cultures (24), canine L cells in vitro (25-27), and
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both rats and dogs i vive (42, 43). Studies in FRIC cultures
(24) have suggested the presence of SSTRS5, a somatostatin-
28-preferring subtype on the L cell, rather than SSTR2, the
S14-preferring receptor (44). The results of the present study
suggest that neither of these receptors is present on GLUTag
cells, as both should be associated with decreased GLP-1
release through inhibition of the PKA pathway. Although it
remains to be established why GLP-1 secretion by the
GLUTag cells was actually increased by treatment with high
doses of 514, this finding is not without precedent, as stim-

ulatory effects of somatostatin have been observed in the

neuroendocrine GH,C; cells via release of the GAy-subunit
from inhibitory Ge proteins (45, 46).

Finally, GLP-1 secretion was also found to be stimulated
by a long chain monounsaturated fatty acid (18:1), but not by
a similar length saturated fatty acid (16:0), consistent with
our previous results using FRIC cultures (21, 24). Oleic acid
has also been reported to stimulate the canine L cell in vitro
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over a similar dose range (27). These findings are consistent
with several reports of stimulation of the rat ileal L cell in vivo
by mixed fats (39} and therefore suggest that diets enriched
in long chain monounsaturated fatty acids, such as olive oil,
may be a useful approach to enhance the release of GLP-1 in
vivo. A summary of the similarities and differences between
the secretory responses of the primary rat L cell in culture
{e.g. FRIC cultures) and the GLUTag cell line is shown in
Table 1.

Despite evidence for secretory activity of GIP in the
GLUTag cell systemn, activation of the PKA-dependent signal
transduction pathway for 12 h with GIP did not increase
proglucagon mRNA transcript levels in GLUTag cells. These
findings were somewhat unexpected, as we previously re-
ported that treatment of FRIC cultures for 24 h with GIP
increases total GLP-1 levels slightly, but significantly (20). In
control experiments, however, proglucagon mRNA tran-
script levels were increased by forskolin/IBMX-induced ac-
tivation of PKA-dependent pathways, consistent with pre-
vious findings in both FRIC cultures and GLUTag cells using
forskolin/IBMX (18, 29) and with nuciear run-on studies it
GLUTag cells showing activation of proglucagon gene tran-
scription by forskolin/IBMX, presumably through the pro-
glucagon gene cAMP response element (29). The reasons for
the apparent lack of effect of GIP are thus not clear, but may
relate to the duration of treatment (12 vs. 24 h}, the degree of
activation of the PKA pathway by each agent, and/or pos-
sible translational vs. transcriptional effects. Finally, indirect
evidence using a luciferase reporter gene linked to proglu-
cagon promoter sequences has suggested that PKC may ac-
tivate proglucagon gene transcription in the «TC2 islet cell
line {47). However, the results of the present study indicate
a total lack of effect of PDBU on proglucagon mRNA tran-
script levels in the enteroendocrine GLUTag cell line. We
have similarly reported that activation of the PKC-depen-
dent pathway in GLUTag cells with chelecystokin (29) or in
FRIC cultures with PMA (18) dees not augment total PGDP
or proglucagon mRINA transcript levels. Taken together,
therefore, these observations highlight the importance of the
cAMP-dependent pathway in the regulation of both proglu-
cagon gene expression and GLP-1 secretion by the intestinal
L cell.

The results of the present study indicate that the GLUTag
cells appear to represent a good model of the intestinal L cell;

TABLE 3, Comparison of secretory responses of FRIC cuitures
and GLUTag cells

Treatment

PEA activation
PKC activation
Phospholipase C activation

GIP
Glucagon
514

Muscarinic agonists
B-Adrenergic agonist
GABA

Fatty acids (18:1)
Fatty acids (16:0)

1, Stimulation; |, inhibition; «+», no effect.

FRIC response GLUTag response

b= 11— St oo
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they exhibit appropriate responses to known stimulators of
GLP-1 secretion and are unaffected by factors that do not
modulate GLP-1 release in other systems. Thus, these cells
should be useful for further studies to evaluate potential
GLP-1 secretagogues.
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