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Gastrointestinal hormones synthesized in functionally
distinct populations of enteroendocrine cells and neurons
play diverse roles in regulation of energy intake, nutrient
absorption, and nutrient disposal. Most gut hormones are
secreted at low basal levels in the fasting state, and plasma
levels of most gut peptides increase rapidly but transiently
after nutrient ingestion. The effects of gut hormones are
increasingly complex and include regulation of food intake,
exocrine secretion, gut motility, mucosal growth, nutrient
absorption, and pancreatic endocrine function. Gut hormones
also communicate with regulatory centers in the central ner-
vous system (CNS) via afferent ascending nerves. This chapter
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focuses on the biology of the proglucagon-derived peptides
(PGDPs) and gut hormones with related actions on control
of insulin secretion and energy balance.

PROGLUCAGON GENE STRUCTURE AND
THE PROGLUCAGON-DERIVED PEPTIDES

Before the molecular biology era, the best characterized
member of the proglucagon peptide family was 29-amino-
acid glucagon produced in pancreatic o cells. Antisera
directed against pancreatic glucagon were shown to cross-
react with immunoreactive peptides in gut extracts that were
also detected in the circulation (1). These peptides, originally
known collectively as “enteroglucagons,” were subsequently
shown to consist of 2 principal forms: a larger protein of 69
amino acids designated glicentin, and a smaller 37-amino-acid
peptide named oxyntomodulin (2). After cloning of comple-
mentary DNA (cDNA) and genes encoding mammalian
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FIG. 6-1. Structural organization of proglucagon gene and
the proglucagon-derived peptides (PGDPs). Proglucagon
undergoes tissue-specific posttranslational processing in the
pancreas, intestine, and brain to liberate the indicated PGDPs.
GRPP, glicentin-related pancreatic polypeptide; GLP-1 and
GLP-2, glucagon-like peptide-1 and -2; IP-1 and IP-2, inter-
vening peptides 1 and 2; MPGF, major proglucagon fragment.

preproglucagon, the structural relation among various PGDPs
was clearly elucidated (Fig. 6-1). Two PGDPs related in
sequence to glucagon, designated glucagon-like peptide-1
(GLP-1) and -2 (GLP-2) were found to be coencoded together
with glucagon in a single proglucagon precursor (3—5). The
human proglucagon gene is located on the long arm of chro-
mosome 2 (6) and consists of six exons, with the sequences
of glucagon and the GLPs encoded within separate exons
(see Fig. 6-1). To date, no variants of the human proglucagon
gene have been linked to heritability of specific human
diseases.

The mammalian genome encodes a single proglucagon
gene that is transcribed to yield identical proglucagon messen-
ger RNA (mRNA) transcripts predominantly in three cell
types: pancreatic o cells, gut enteroendocrine L cells, and
neurons in the caudal brainstem. The proglucagon mRNA
transcript is structurally identical in all three tissues (7-9);
hence, diversity in the generation of tissue-specific profiles
of PGDPs is accomplished through tissue- and cell-specific
expression of the prohormone convertases, proteases that
differentially process proglucagon to yield either 29-amino-
acid glucagon in the islet o cell or glicentin, oxyntomodulin,
and both GLP-1 and GLP-2 in the gut L cell (see Figs. 6-1
and 6-2). Experimental studies have provided evidence
supporting an essential role for PC2 in the cleavage of
proglucagon to yield glucagon in pancreatic o, cells, together
with a larger, incompletely processed, secreted polypeptide
designated major proglucagon fragment (10-13). The
importance of PC2 for the generation of mature proglucagon
is exemplified by the phenotype of mice with a targeted
disruption of the PC2 gene. These mice exhibit mild hypo-
glycemia and markedly increased levels of incompletely
processed proglucagon, together with deficiency of mature
29-amino-acid glucagon (14).

In contrast with the importance of PC2 for generation of
glucagon in islet o cells, PC1/3 appears to be required for
processing of proglucagon in intestinal L cells (11,15). PC1
knockout mice exhibit multiple defects in prohormone
processing including failure to generate significant amounts

of GLP-1 and GLP-2 (16). Although levels of mature GLP-1
are reduced in human subjects with an inactivating mutation
of PC1, small amounts of bioactive GLP-1 can be generated
in the absence of a functional PC1 enzyme (17). Intriguingly,
PC1/3 has been localized to o cells in the embryonic pancreas,
raising the possibility that GLP-1 may be liberated during
development of the endocrine pancreas (18). PC1/3 expres-
sion, together with increased production of bioactive GLP-1,
has also been localized to o cells in the setting of experi-
mental diabetes; however, the biological implications of this
finding remain uncertain (18,19).

Regulation of Proglucagon Gene Expression

In the pancreas, proglucagon gene expression is stimulated
by fasting and hypoglycemia, but is inhibited by insulin (20,
21), whereas in the intestine, proglucagon gene expression is
up-regulated by nutrients (22). Gastrin-releasing peptide
(GRP) and glucose-dependent insulinotropic polypeptide
(GIP) (23) have been shown to increase levels of intestinal
proglucagon mRNA transcripts in rodents. Fasting reduces
and refeeding stimulates intestinal proglucagon gene expres-
sion (24), and a high-fiber diet (25) and short-chain fatty
acids are potent inducers of proglucagon mRNA transcripts
in enteroendocrine cells (26,27). Intestinal resection is asso-
ciated with increased levels of proglucagon mRNA tran-
scripts in the remnant intestine (28,29); however, the signals
and mechanisms underlying this up-regulation remain
unknown. Agents that activate the cAMP and protein kinase
A (PKA) signaling pathways also increase proglucagon gene
expression in the pancreas and intestine (8,30,31). Protein
hydrolysates directly stimulate intestinal proglucagon gene
expression through induction of gene transcription in part
via DNA-promoter elements that mediate the response to
cyclic 3’,5’-adenosine monophosphate (cAMP) (32).

Intestinal proglucagon gene expression has been studied
using primary cultures of intestinal cells, enteroendocrine cell
lines, and transgenic mice. A primary determinant of intes-
tinal proglucagon gene expression in studies of nontrans-
formed intestinal cells appears to be the level of intracellular
cAMP (8). Although agents such as phorbol esters, cholin-
ergic agonists, calcium ionophores, and both GIP and GRP
stimulate PGDP secretion in these cultures (33), only activa-
tors of cAMP generation enhanced proglucagon biosynthesis.
Similarly, agents acting through the cAMP-dependent path-
way appear to be the principal factors regulating proglucagon
gene expression in mouse enteroendocrine glucagon SV40T
antigen (GLUTag) (31,33) and secretin tumor cell line (STC-1)
cells (34). Although GRP increases proglucagon gene tran-
scription in STC-1 cells via the cAMP-response element
(CRE) (23), GRP has not yet been shown to stimulate
proglucagon gene expression in primary cell cultures or in
the rodent intestine in vivo.

Much less is known about the factors regulating the human
proglucagon gene, largely because of the paucity of suitable
models for studying human proglucagon gene expression.
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FIG. 6-2. Amino acid sequences of the proglucagon-derived peptides (PGDPs), exendin-4, glucose-
dependent insulinotropic polypeptide (GIP), and pancreatic polypeptide (PP). The lizard-derived
exendin-4 shares 53% amino acid sequence identity with mammalian glucagon-like peptide-1 (GLP-1).
Peptides that contain an alanine or proline at position 2 (indicated by underlining) are substrates for
cleavage by the enzyme dipeptidyl peptidase-IV. IP-1 and IP-2, intervening peptides 1 and 2.

Transgenic mice expressing a human proglucagon gene
promoter growth hormone transgene in the gut provide a
potential model for studies of the human proglucagon gene
promoter (35). Although nutrients up-regulated expression
of the endogenous murine proglucagon gene, feeding had
no effect on the human growth hormone (hGH) transgene,
suggesting that important control elements for nutrient-
regulated control of human proglucagon promoter activity do
not reside within the 1.6 kb of transgene human proglucagon
gene promoter sequences (36). The control of human
proglucagon gene expression has also been examined in NCI-
H716 cells, a cell line derived from a human adenocarcinoma
exhibiting features of endocrine differentiation. Multiple
factors, including palmitic acid, oleic acid, meat hydrolysate,
carbachol, and GRP stimulate PGDP secretion from NCI-
H716 cells. In contrast with results of studies in rodent cells,
cAMP enhanced GLP-1 secretion but failed to increase levels
of proglucagon mRNA transcripts in NCI-H716 cells (37).
Similarly, insulin, phorbol myristate acetate, or forskolin, all
known regulators of rodent proglucagon gene expression,
had no effect on proglucagon gene expression in NCI-H716
cells, and transfection studies using cither the human or
rodent proglucagon gene promoters demonstrate that NCI-
H716 cells do not support transcriptional activation of the
isolated proglucagon gene promoter sequences (38). Hence,
the available data suggest that NCI-H716 cells may express the
human proglucagon in a constitutive, nonregulated manner.
Cis-acting sequences within the rat proglucagon gene
promoter have been identified as important control regions
for islet cell-specific gene expression. Transcription factors
important for islet cell-specific proglucagon gene expres-
sion include Brn4, Pax-6, Cdx-2/3, Isl-1, and members of the
hepatocyte nuclear factor 3 (HNF-3 or Foxa) family (39-46).
Pax6 and Cdx-2/3, in association with a coactivator protein,
p300, interact synergistically to regulate proglucagon gene
expression in islet cells (47). Pax-2 binds elements within
the proglucagon gene promoter (48), but whether Pax-2 plays
a role in the control of proglucagon gene expression remains
uncertain (49). Similarly, although Brn4 is a potent activator
of islet proglucagon gene expression, targeted disruption

of the Brn4 gene in mice does not produce abnormalities in
a-cell development or changes in the levels of pancreatic
glucagon mRNA transcripts (50). The proglucagon gene
5’-flanking sequences contain a CRE that confers cAMP
responsivity to proglucagon gene transcription in pancreas
and intestine (8,30,31,51).

In contrast with our understanding of proglucagon expres-
sion in pancreatic islets, less is known about the factors that
specify proglucagon gene expression in the intestine, partly
because of the limitations of models for analysis of enteroen-
docrine gene transcription. Cell transfection studies using
immortalized STC-1 or GLUTag cell lines indicate that DNA
sequences between —1,252 and —2,292 in the rat proglucagon
promoter are essential for specifying intestinal proglucagon
expression (52). Several transcription factors thought to be
important for control of islet proglucagon gene transcription
may not be essential for enteroendocrine gene transcription.
Genetic inactivation of the murine Foxal (HANF-3a) gene
results in mice with mild hypoglycemia and inappropriately
low levels of pancreatic proglucagon mRNA transcripts;
however, levels of intestinal proglucagon mRNA transcripts
are normal in Foxal mutant mice (46,53). Similarly, although
members of the Foxa3 (HNF-3 ) family have been implicated
in the control of proglucagon gene transcription in transfec-
tion studies, levels of pancreatic and intestinal proglucagon
mRNA transcripts are normal in Foxa3~~ mice (54).

The Pax-6 gene is important for cell lincage development
in the gut and pancreas, as well as for control of pancreatic
and intestinal proglucagon gene expression. Global inactiva-
tion of the murine Pax-6 gene results in major defects in
formation of islet cell lineages (55), whereas mice homozy-
gous for a dominant negative form of Pax-6 (SEYN") have
significantly reduced levels of proglucagon mRNA tran-
scripts in the pancreas (56) and both the small and large
bowel, indicating that this transcription factor is essential for
proglucagon gene expression in both islet and enteroen-
docrine cells (57). Conversely, increased expression of Pax-6
in primary intestinal cell cultures or in the rodent intestinal
epithelium is associated with up-regulation of the levels of
proglucagon gene expression (58).
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Control of Proglucagon-Derived Peptide Secretion

Glucagon, the principal secretory product from islet o
cells, is secreted in response to hypoglycemia; however, the
mechanism for sensing hypoglycemia and stimulating o-cell
secretion likely involves the central and peripheral nervous
system. In contrast, insulin and other factors secreted from the
B cell, such as y-aminobutyric acid (GABA) and zinc, appear
to be the predominant factors inhibiting islet ci-cell secretion.
Glicentin, oxyntomodulin, GLP-1, and GLP-2 (Fig. 6-2) are
cosecreted from enteroendocrine L cells, which are predom-
inantly localized to the distal ileum and colon (59,60). GLP-1—
immunopositive cells may also be located in more proximal
regions of the small bowel, in cells that produce both GLP-1
and GIP (61). Multiple forms of GLP-1 are released in vivo,
including GLP-1(1-37) and GLP-1(1-36)NH,, which appear
to be biologically inactive (62-64), and GLP-1(7-37) and
GLP-1(7-36)NH,, which are biologically active. A major
proportion of GLP-1 is amidated at the C-terminal glycine
residue [GLP-1(1-36)NH, and GLP-1(7-36)NH,], likely via
the activity of peptidylglycine o-amidating monooxyge-
nase (65). C-terminal amidation may enhance the survival of
GLP-1 in plasma (66). Both GLP-1(7-37) and GLP-1(7-36)
NH, appear equipotent (66—68); however, most circulating
GLP-1 in humans is GLP-1(7-36)NH, (69). In pigs and rats,
approximately half of the GLP-1 is glycine extended, whereas
in dogs, the glycine-extended forms of GLP-1 predominate.

GLP-1 secretion from intestinal endocrine cells is stimu-
lated by neural signals, endocrine factors, and direct nutrient
contact with gut L cells (70). Intestinal PGDP secretion is
regulated by several intracellular signals, including PKA,
PKC, and calcium (33,71,72). A combination of studies
using fetal rat intestinal cultures, the perfused rat ileum, and
experiments performed in humans, rodents, and dogs have
demonstrated that GLP-1 secretion is regulated directly by
nutrients such as fatty acids, butyrate, peptones, or amino
acids such as glutamine. Nevertheless, the rapid increase in
plasma levels of the PGDPs within minutes of nutrient inges-
tion invokes a role for both neural and endocrine factors in
control of L-cell secretion (70,73-75). Several neurotrans-
mitters, including muscarinic agonists (76,77), regulate L-cell
secretion both in vitro and in vivo. In humans, basal plasma
levels of intact GLP-1 typically are within the 5- to 10-pM
range in the fasting state, and increase to approximately 50 pM
after meal ingestion (69,78). A small but detectable defect in
meal-stimulated GLP-1 secretion has been observed in some
subjects with obesity and type 2 diabetes (78).

Mixed meals appear to be the most potent stimulus for
GLP-1 secretion; however, individual nutrients including
glucose, fatty acids, and dietary fiber also stimulate PGDP
secretion (74,79-81). As most GLP-1-producing L cells,
and hence stored GLP-1, is localized to the distal portion of
the small intestine, a role for neural, endocrine mediators, or
both in the rapid, nutrient-stimulated increase in plasma
GLP-1 seems likely (70,82). Candidate mediators for indi-
rect stimulators of GLP-1 include the more proximally
located duodenal hormone GIP and the neurotransmitter
acetylcholine (77,82-84). Nevertheless, species-specific

differences have been identified in studies of GLP-1 secretion
because GIP does not stimulate GLP-1 secretion in humans
(85,86), whereas the neuropeptide GRP stimulates GLP-1
secretion in both humans and rodents (87). Further evidence
for the importance of GRP derives from studies of mice with
inactivation of the GRP receptor that exhibit a reduced plasma
GLP-1 response to gastric glucose (88). The neuropeptide
calcitonin gene-related peptide may also regulate GLP-1
release (89). The vagus nerve plays a major role in control-
ling GLP-1 release from the distal L cells in response to
ingested nutrients (90). Intestinal GLP-1 secretion appears
to be inhibited by insulin and somatostatin-28 (33,91), as
well as by the neuropeptide galanin (92).

PROGLUCAGON-DERIVED PEPTIDE
METABOLISM AND CLEARANCE

Little is known about the metabolism of glucagon, glicentin,
and oxyntomodulin; however, the kidney plays a major role
in the catabolism and clearance of all three peptides (93,94).
Glucagon action is terminated via extracellular and intra-
cellular degradation pathways. Glucagon-degrading activity
within hepatic endosomes has been attributed to cathepsins
B and D (95), and glucagon and GLP-1 are substrates for the
widely expressed membrane-bound neutral ectopeptidase
(NEP) 24.11 (96). The clearance and degradation of GLP-1
has received considerable attention because of the therapeu-
tic potential of the peptide. The half-life of circulating native
GLP-1 is less than 2 minutes (97,98), principally because of
the protease activity of dipeptidyl peptidase-IV (DPP-IV), an
aminopeptidase that specifically cleaves dipeptides from the
amino terminus of proteins containing an alanine or proline
at position 2.

Oxyntomodulin and GLP-2 are also substrates for
DPP-1V (99,100). DPP-1V is widely expressed in a large
number of cell types in many tissues including the vascular
endothelium of the small intestine, directly adjacent to the
sites of GLP-1 release (97,101,102). Furthermore, in addi-
tion to a cell-associated membrane-bound form, a soluble
DPP-IV molecule is also found in the circulation. DPP-IV
catalyzes the cleavage of GLP-1 at the position 2 Ala residue
to yield GLP-1(9-37) or GLP-1 (9-36)NH,. More than 50%
of GLP-1 is metabolized to its N-terminal truncated form by
DPP-IV within 2 minutes of peptide administration (103).
Complementary evidence for the importance of DPP-1V in
GLP-1 metabolism is derived from studies of rodents with
mutations or inactivation of the DPP-IV gene. DPP-IV-
deficient rats exhibit a prolonged half-life of GLP-1 (104,105),
and mice with a targeted inactivation of DPP-IV exhibit
increased levels of plasma GLP-1 (106). Moreover, rats
and mice with mutant or inactivated DPP-IV genes exhibit
improved glucose tolerance and increased levels of circulat-
ing intact GLP-1. DPP-1V is also critical for GLP-1 inactiva-
tion in humans, because intravenous or subcutaneous GLP-1
is rapidly degraded (within 30 minutes) to GLP-1(9-36)NH,
after administration of GLP-1 to healthy or diabetic human
subjects, and this N-terminally shortened peptide accounts
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for more than 75% of the immunodetectable circulating
GLP-1 (98).

Although GLP-1 (9-36)NH, functions as a weak compet-
itive pharmacologic antagonist of the GLP-1 receptor at
the B cell and in the gastrointestinal system (107), experi-
ments in anesthetized pigs treated with DPP-IV inhibitors
revealed that GLP-1 (9-36)NH, could paradoxically elicit
modest insulin-independent antihyperglycemic effects (108).
In contrast, infusion of GLP-1 (9-36)NH, in healthy human
subjects had no effects on glucose tolerance, insulin secre-
tion or sensitivity, or GLP-1 action (109). Thus, the biologi-
cal importance of N-terminally cleaved GLP-1 (9-36)NH,
remains uncertain. NEP 24.11 also exhibits endoproteolytic
activity on GLP-1 and may also contribute to the metabolism
of GLP-1 (96,110).

Because GLP-2 is cosecreted with GLP-1, factors identi-
fied as important for GLP-1 secretion are similarly important
for GLP-2 secretion, predominantly nutrients (111-113).
GLP-2 also contains an alanine at position 2 and is degraded
by DPP-IV (100). However, the half-life of exogenously
administered GLP-2 is comparatively longer than that mea-
sured for GLP-1, at ~7 minutes (114). Although limited infor-
matjon is available about perturbations in levels of GLP-2 in
human disease, patients with extensive resection of the small
and large bowel exhibit significant reductions in circulating
levels of GLP-2 after meal stimulation, whereas preserva-
tion of the colon appears important for maintaining levels of
GLP-2 in adult human subjects (115,116). In contrast, the
colon may be less important for preservation of plasma levels
of GLP-2 in infants with nutrient malabsorption consequent
to intestinal surgery (117). Patients with inflammatory bowel
disease often exhibit increased circulating levels of GLP-2,
in association with reductions in plasma levels of DPP-IV
activity (118).

The primary route of clearance for GLP-1 and GLP-2
appears to be through the kidney via mechanisms that include
glomerular filtration and tubular catabolism (119-122).
Patients with uremia have increased levels of circulating,
immunoreactive GLP-1 (123), and bilateral nephrectomy or
ureteral ligation in rats is associated with increases in the
circulating half-life of GLP-1 (119). A role for tissues other
than the kidney, such as the liver and lung, in GLP-1 clear-
ance has not been clearly established (119).

GLUCAGON RECEPTOR FAMILY

Separate teceptors have been identified for glucagon,
GLP-1, GLP-2, and GIP (124); however, the mechanisms
underlying actions of PGDPs such as glicentin and oxynto-
modulin remain poorly understood.

GLUCAGON RECEPTOR

The glucagon receptor (Gegr) is a member of the seven-
transmembrane—spanning G protein—coupled receptor super-
family, and it responds to glucagon with increases in both

intracellular cAMP and intracellular calcium (125).
Oxyntomodulin is capable of binding to and activating both
the glucagon and GLP-1 receptors; however, the anorectic
actions of oxyntomodulin appear to require a functional
GLP-1 receptor (126).

The human Gegr gene is localized to chromosome 1725,
and several reports have described an association between
a Gly40Ser Gegr mutation and an increased incidence of
type 2 diabetes; however, this finding has not been confirmed
in different populations with type 2 diabetes (127,128).
Furthermore, cells expressing a transfected Gegr containing
the Gly40Ser mutation exhibit decreased affinity for glucagon
in vitro, and human subjects with the Gly40Ser mutation
exhibit a paradoxically decreased glycemic response to
glucagon infusion in vivo (128,129). Hence, the biological
significance of the Gly40Ser substitution remains uncertain.

Gegr mRNA transcripts have been detected in liver,
islet B cells, brain, adipocytes, heart, and kidney. Rat Gegr
mRNA transcripts have also been detected in tissues such
as spleen, thymus, adrenal gland, intestine, ovary, and testis
where glucagon action remains poorly defined (130). Glucagon
binding sites have been identified in multiple brain regions,
and Gegr transcripts have been detected in cortex, cerebellum,
hypothalamus, and brainstem; however, the biological actions
of glucagon in specific CNS regions remain unclear (131).

Loss of glucagon action has been studied using anti-
sense oligonucleotides directed against the Gegr in diabetic
mice (132,133), or in Gegr”’~ mice. Remarkably, overlap-
ping phenotypes were seen in these experiments, including
increased circulating levels of glucagon, mild fasting hypo-
glycemia together with improved glucose tolerance in
Gegr™ mice, decreased body weight, and increased pancre-
atic mass associated with considerable hyperplasia of islet
o cells (134,135). Furthermore, reduction of Gegr expres-
sion in db/db mice was associated with lower levels of blood
glucose, triglycerides, and free fatty acids (132,133). The
improvement in glycemic control after loss of Gegr function
in these rodent studies appears to be attributable in part to
increased circulating levels of bioactive GLP-1 derived from
the pancreas. Gegr expression is regulated in a tissue-specific
manner with glucose and cAMP, important for Gegr expres-
sion in hepatocytes (136,137), whereas glucose increased
but cAMP and the glucocorticoid dexamethasone decreased
levels of Gegr mRNA transcripts in rat islets (138).

GLUCAGON-LIKE PEPTIDE-1 RECEPTOR

The glucagon-like peptide-1 receptor (GLP-1R) was cloned
from a rat pancreatic islet cDNA library (139). The human
GLP-IR gene has been mapped to chromosome 6, band
p21.1 (140); however, human GLP-IR mutations ot poly-
morphisms have not been linked to the development of
type 2 diabetes. The GLP-1R is expressed in lung; kidney;
stomach; heart; intestine; o, B, and 8 cells of the pancreatic
islets; and multiple regions of the CNS (131,141-143).

The GLP-1R couples to multiple G proteins, including Ga,,
Gotyy ), and Goy 2, leading to activation of several intracellular
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signaling pathways (144), increased adenylate cyclase and
phospholipase C, and activation of PKA and PKC, respec-
tively (139,145,146). GLP-1R activation also increases intra-
cellular calcium (147-149), phosphatidylinositol-3 kinase
(P1;K), and mitogen-activated protein kinase (MAPK)
signaling pathways (144,150). Little is known about the
factors that regulate levels of GLP-1IR mRNA. GLP-1R
expression is down-regulated in response to GLP-1, activa-
tion of PKC, high glucose, or dexamethasone, whereas treat-
ment of diabetic rodents with DPP-IV inhibitors is associated
with up-regulation of pancreatic GLP-1R expression (151).

The GLP-1R undergoes homologous and heterologous
desensitization and internalization in islet cell lines, in asso-
ciation with receptor phosphorylation (152-154). However,
desensitization of the GLP-1R has not been observed after
long-term administration of GLP-1R agonists in vivo.
Exendin (9-39), an N-terminally truncated peptide derived
from the lizard GLP-1R agonist exendin-4, functions as a
relatively specific GLP-1 receptor antagonist (155,156) and
is commonly used to examine the consequences of transient
loss of GLP-1R action.

GLUCAGON-LIKE PEPTIDE-2 RECEPTOR

The GLP-2 receptor was cloned from hypothalamic and
intestinal ¢cDNA libraries and is also coupled to cAMP
generation when expressed in heterologous cell lines (157).
GLP-2R expression is highly restricted, predominantly to the
stomach, small and large bowels, and the CNS (158-160).
Immunocytochemistry localized the GLP-2R to human
enteroendocrine cells (158) and specific regions of the
murine and rat CNS (159,160), whereas in situ hybridization
has localized the receptor to neurons in the CNS and the
murine enteric nervous system (161,162). The GLP-2R is
highly specific for GLP-2 and is not activated by physiolog-
ically relevant concentrations of related members of the
glucagon peptide superfamily (157,163).

GLP-2 dose-dependently activates adenylyl cyclase,
cAMP formation, and PKA in cells expressing a heterolo-
gous rat or human GLP-2R, as well as in primary cell cultures
from the CNS and the intestinal mucosa (157,160,164,165).
Furthermore, GLP-2R activation activates c-fos in cells trans-
fected with the GLP-2R (164) and in the murine gastroin-
testinal tract (161). GLP-2 also activates constitutive nitric
oxide synthase (NOS) activity and endothelial NOS protein
abundance in the gut, which appears to regulate GLP-2—
induced intestinal blood flow and glucose uptake (166).

Activation of the GLP-2 receptor is also associated
with enhanced cell survival. GLP-2R activation inhibits
cycloheximide-induced apoptosis in a PKA-independent
manner (167); in contrast, PKA regulates the antiapoptotic
properties of GLP-2R signaling after inhibition of PL,K
(168) in transfected fibroblasts or exposure to glutamate in
hippocampal neurons (160). Although GLP-2 administra-
tion promotes rapid growth of the intestinal epithelium after
administration in vivo (169), whether GLP-2R activation can

directly stimulate cellular proliferation requires further study.
Incubation of colonic intestinal cells or rat astrocytes with
GLP-2 results in increased cell proliferation (170-172);
however, baby hamster kidney (BHK) fibroblasts transfected
with the GLP-2 receptor did not exhibit a significant mito-
genic effect in response to GLP-2 (164). Furthermore, GLP-2
treatment paradoxically inhibits cell proliferation in epithe-
lial cells derived from the small intestine, yet stimulates
cell proliferation in cell lines derived from the colon in a
GLP-2R—-independent manner (173). Hence, the molecular
basis for GLP-2R activation promoting mitogenesis appears
complex, likely indirect, and highly cell-type or tissue specific.

GLUCOSE-DEPENDENT INSULINOTROPIC
POLYPEPTIDE RECEPTOR

Genetic mapping and linkage studies have localized the
human glucose-dependent insulinotropic polypeptide recep-
tor (GIPR) gene to chromosome 19 band q13.3 (174). The
GIPR is a member of the seven-transmembrane domain,
heterotrimeric, G protein—coupled Gegr superfamily (124,
175), and it is expressed in the pancreas, stomach, small
intestine, adipose tissue, adrenal cortex, lung, pituitary, heart,
testis, vascular endothelium, bone, and brain (175,176).

Activation of GIPR signaling leads to generation of cAMP
and increases in intracellular calcium in pancreatic islet cells,
adipocytes, osteoblasts, endothelial cells, and heterologous
cell lines transfected with GIPR (176—179). The GIPR also
signals via PI;K, MAPK, and phospholipase A, pathways
(180-182).

The GIPR undergoes rapid and reversible homologous
desensitization (73) in vitro. Studies using the BTC3 islet
cell line implicate a role for regulator of G-protein signal-
ing 2 (RGS-2), G-protein receptor kinase 2 (GRK-2), and
B-arrestin-1 in GIP-induced receptor desensitization (183).
GIP action is diminished in human subjects with type 2
diabetes (86), and defective GIP action in Zucker diabetic
fatty rats has been correlated with reduced levels of GIPR
mRNA transcripts in pancreatic islets (184).

The absence of GIP action has been studied in mice with
genetic disruption of the GIPR (185). GIPR knockout mice
exhibit a mild defect in glucose tolerance (185), but they are
resistant to the development of obesity and insulin resistance
after high-fat feeding (186). Despite the roles of GIP and
GLP-1 as the two dominant incretins regulating insulin secre-
tion, combined disruption of both the GLP-1 and GIP recep-
tors produces only modest impairment of glucose-dependent
insulin secretion (187,188).

BIOLOGICAL ACTIONS OF GLUCAGON

Glucagon exerts a number of important physiologic actions
in tissues such as the liver, the endocrine pancreas, the vascu-
lar bed, and the gastrointestinal tract. Glucagon regulates
hepatic glucose production via activation of glycogenolysis
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and gluconeogenesis and by inhibition of glycolysis. Glucagon
modifies the activity of enzymes important for glucose
production and modulates expression of genes encoding
enzymes in the glycolytic or gluconeogenic pathways (189).
Glucagon also regulates fatty acid metabolism via reduction
of malonyl coenzyme A (CoA) and stimulation of fatty acid
oxidation. The cAMP-dependent transcription factor CREB
is a downstream mediator for glucagon action. CREB, together
with activation of the nuclear receptor coactivator peroxisome
proliferator-activated receptor (PPAR) gamma coactivator-1
(PGC-1) and suppression of PPARY activity, ultimately results
in activation of hepatic gluconeogenesis (190).

Glucagon increases cAMP and stimulates lipolysis in
adipocytes, thereby providing free fatty acids as substrate for
fat-burning tissues. Glucagon also inhibits insulin-stimulated
glucose transport in adipocytes (191). In the peripheral vascular
system, glucagon acts as a vasodilator via effects on local
vascular tone, and glucagon increases cardiac output and heart
rate, possibly via direct effects on the heart. Pharmacologic
doses of glucagon increase renal blood flow, glomerular filtra-
tion rate (GFR), and urinary electrolyte excretion; however,
lower concentrations of glucagon do not affect renal blood
flow, GFR, or solute excretion (192). Although the kidney
exhibits significant gluconeogenic capacity, the available
evidence does not support a role for endogenous glucagon in
the control of renal glucose output (193).

The B cell expresses receptors for glucagon coupled to
cAMP and stimulation of insulin secretion. The threshold
for glucagon-stimulated cAMP accumulation in isolated
cells is ~1 nM glucagon, which is greater than the concen-
trations required for cAMP stimulation by GLP-1 or GIP
(194). The physiologic importance of intraislet or circulating
glucagon for B-cell physiology remains unclear, given the
high concentrations of glucagon required to stimulate the
B cell in vitro.

GLUCAGON ADMINISTRATION IN HUMAN
SUBJECTS

The most common use of glucagon therapeutically is in the
acute management of severe hypoglycemia. Diabetic patients
with hypoglycemia generally respond quickly, with a rapid
increase in blood glucose, after glucagon administration
(195,196). Glucagon is also used to inhibit gastrointestinal
motility during radiologic or endoscopic investigations, and
glucagon administration has been shown to benefit selected
patients with refractory bronchospasm or symptomatic
bradycardia (197,198).

BIOLOGICAL ACTIONS OF GLICENTIN

Glicentin is a 69-amino-acid PGDP that contains the
sequence of 29-amino-acid glucagon flanked by peptide
extensions at both the amino and carboxy termini (see
Fig. 6-2). Although cosecreted with GLP-1 and GLP-2 from

gut L cells, the specific biological actions of glicentin
remain elusive. Glicentin has been shown to activate signal
transduction pathways leading to stimulation of intracellular
calcium and reduction of cAMP formation in smooth muscle
cells derived from rabbit antrum (199). Furthermore, admin-
istration of glicentin to rodents induces small-bowel growth
in some (169,200) but not all studies (201). To date, a distinct
receptor responsible for transducing the biological actions of
glicentin has not yet been identified.

OXYNTOMODULIN

Oxyntomodulin contains the sequence of 29-amino-acid
pancreatic glucagon together with an 8-amino-acid carboxy-
terminal extension (see Fig. 6-1). The original biological
action described for oxyntomodulin was stimulation of acid
secretion from the oxyntic glands in the stomach (202).
Additional actions ascribed to oxyntomodulin include stim-
ulation of intestinal glucose uptake (203), regulation of
insulin secretion (204), reduction of gastric emptying (205),
and inhibition of meal-stimulated gastric acid secretion
(205-207). More recent studies have demonstrated an
inhibitory effect of oxyntomodulin on food intake after both
intracerebroventricular and peripheral administration in rats
(208,209) and after intracerebroventricular administration in
mice (126). Oxyntomodulin infusion also produces satiety
and inhibits food intake after short-term intravenous infu-
sion in human subjects (210). Although oxyntomodulin is
a weak agonist at both the GLP-1 and glucagon receptors
(211-214), the anorectic actions of oxyntomodulin are
blocked by the GLP-1R antagonist exendin (9-39) (208) and
are eliminated in the absence of a functional GLP-1R (126).
Given the overlapping actions of oxyntomodulin with
glucagon and GLP-1 and the lack of evidence for a distinct
oxyntomodulin receptor, the available evidence suggests
that many of the pharmacologic actions of oxyntomodulin
represent heterologous activation of related PGDP receptor
systems.

BIOLOGICAL ACTIONS OF GLUCAGON-
LIKE PEPTIDE-1

GLP-1 exerts multiple physiological actions leading to
control of energy intake and nutrient assimilation (Table 6-1)
(215). The original physiologic role described for GLP-1
was that of an incretin hormone. GLP-1 is secreted after nutri-
ent ingestion and stimulates insulin secretion in a glucose-
dependent manner (85,216,217). GLP-1 also increases
insulin gene transcription, mRNA stability, and biosynthesis
by mechanisms that involve both cAMP/PKA-dependent
and -independent pathways, as well as increases in the levels
of intracellular Ca?* (145,218,219). GLP-1 increases expres-
sion of the sulfonylurea receptor (SUR1) and inwardly recti-
fying potassium channel (Kir 6.2) in 3 cells, and it prevents
glucose-dependent inhibition of K srp-channel activity (220).
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TABLE 6-1. Summary of glucagon-like peptide-1 action

Pancreas

Stimulates glucose-dependent insulin secretion

Increases insulin gene transcription, messenger RNA
stability, and biosynthesis

Inhibits glucagon secretion

Stimulates somatostatin secretion

Enhances B-cell responsivity and glucose competence

Induces B-cell neogenesis and proliferation

Inhibits B-cell apoptosis

Gastrointestinal tract
Inhibits gastric emptying
Inhibits gastric acid secretion

Cardiovascular system

Increases heart rate and blood pressure in rodents
Improves myocardial contractility

Reduces cardiomyocyte apoptosis

Central nervous system

Inhibits food and water intake

Stimulates luteinizing hormone—-releasing hormone secretion

Increases thyroid-stimulating hormone, luteinizing hormone,
adrenocorticotropic hormone, and corticosterone/cortisol
secretion in vivo

Thyroid, lung, and kidney

Stimulates calcitonin secretion from C cells in the thyroid gland

Enhances mucous secretion, pulmonary muscle relaxation,
and surfactant secretion in lung

Promotes diuresis and natriuresis in kidney

The physiologic importance of GLP-1 has been demon-
strated using GLP-1R antagonists, immunoneutralizing
antisera, and GLP-1R knockout mice. Elimination of GLP-1
activity with GLP-1 immunoneutralizing antisera or the
GLP-1R antagonist exendin (9-39) results in impaired glucose
tolerance and diminished glucose-stimulated insulin levels
in animals and humans (221-224). Similarly, mice with a
targeted inactivation of the GLP-IR gene (GLP-1R™) are
glucose intolerant and exhibit defective glucose-stimulated
insulin secretion (225). GLP-1 confers glucose sensitivity to
B cells, thereby improving the ability of the endocrine pancreas
to sense and respond to glucose (226,227); however, GLP-1R
signaling is not required for preservation of B-cell glucose
sensitivity in the mouse (228). The demonstration that GLP-1
up-regulates the expression of components of the B-cell
glucose sensing system (i.e., glucose transporters and gluco-
kinase) may provide a partial mechanism for the effects of
GLP-1 on B-cell glucose responsivity (229,230).

GLP-1 also inhibits glucagon and stimulates somato-
statin secretion (217). The increase in somatostatin secretion
appears to be direct, via GLP-1Rs on somatostatin-secreting
pancreatic & cells (231), whereas the inhibitory effect of
GLP-1 on glucagon secretion may be indirect, perhaps through
stimulation of insulin and somatostatin, both of which inhibit
glucagon secretion. However, GLP-1 may also inhibit glucagon
secretion directly, via interaction with GLP-1Rs on o, cells
(142). Basal GLP-1 signaling in the fasting state is impor-
tant for glucoregulation because administration of the antag-
onist exendin (9-39) to humans increases fasting glucose

and glucagon, suggesting that even the low basal levels of
GLP-1 exert a tonic inhibitory effect on glucagon-secreting
o cells (156). The insulinotropic and glucagonostatic effects
of GLP-1 are glucose-dependent (232,233). Thus, when blood
glucose levels decrease, GLP-1 no longer stimulates insulin
secretion or inhibits glucagon secretion, thereby reducing
the possibility of hypoglycemia.

GLP-1 administration also leads to a number of changes
in B-cell differentiation and function, including induction of
proliferation and neogenesis of pancreatic B cells, reduced
apoptosis, and increased differentiation of exocrine-like cells
toward a more differentiated B-cell phenotype (234). GLP-1
activates the expression of immediate early genes which
encode for transcription factors that regulate islet cell prolif-
eration and differentiation. Furthermore, the differentiation
of pancreatic exocrine cells toward a differentiated endocrine
and P-cell-like phenotype is associated with induction of
genes required for glucose-sensing and insulin gene expres-
sion (235-237). The molecular mechanisms mediating the
GLP-1R—dependent activation of the endocrine differentia-
tion pathway are poorly understood but may involve synergy
with transforming growth factor-§ and coordinate changes in
Smad transcription factor activity (238).

GLP-1R agonists also stimulate B-cell neogenesis and
proliferation, and increase -cell mass in both normal and
diabetic rodents (235,239-242). Conversely, elimination of
GLP-1R signaling in the mouse is associated with reduced
numbers of large B-cell clusters and alterations in islet or-cell
topography (243), and GLP-1R~~ mice exhibit a reduced
adaptive response and greater hyperglycemia after partial
pancreatectomy (244). The intracellular signal transduction
pathways whereby GLP-1 mediates its proliferative effects
have not been clearly defined, but they likely involve the
induction of PI;K, epidermal growth factor receptor transac-
tivation, and activation of p38 MAPK and PKCE (245,246).

GLP-1 may also regulate B-cell mass via increasing the
resistance to apoptosis (246—250). GLP-1 inhibits apoptosis
in B-cell lines and in nontransformed rodent B cells.
Similarly, treatment of diabetic mice or rats with GLP-1R
agonists reduces B-cell apoptosis (247,251,252). Furthermore,
GLP-1R signaling appears to be essential for B-cell survival
because GLP-1R~ mice exhibit more severe hyperglycemia
and enhanced sensitivity to the cytotoxic effects of strepto-
zotocin on B cells in vivo (247). Importantly, the antiapoptotic
actions of GLP-1 have been demonstrated in experiments
using human islets (249,250). Incubation of freshly isolated
human islets with GLP-1 for 72 hours reduced the expres-
sion of proapoptotic genes, improved cell viability, and
enhanced glucose-stimulated insulin secretion (249).
Complementary studies demonstrated that GLP-1 prevented
apoptosis induced by high glucose or palmitate in human
islets in vitro through mechanisms involving PKB and
Akt (250).

In the gastrointestinal tract, GLP-1 inhibits pentagastrin-
and meal-induced gastric acid secretion and gastric empty-
ing (253,254). The reduction of gastric emptying attenuates
meal-associated excursions in blood glucose, appears
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dependent on the vagus nerve, and likely involves both
central and peripheral GLP-1 actions (255,256). Vagal affer-
ent denervation or GLP-1R antagonism with exendin (9-39)
eliminates the effects of central and peripheral GLP-1 on
gastric emptying. Furthermore, a recombinant GLP-1-albumin
protein (Albugon) that does not appear to cross the blood—
brain barrier retains the ability to inhibit gastric emptying
(256), which is consistent with the importance of ascending
GLP-1R—dependent pathways for control of gut motility.

GLP-1 increases systolic, diastolic, and mean arterial blood
pressure and heart rate in rats (257) and increases heart rate
in calves (258). The effects of GLP-1 on the cardiovascular
system are mediated through central and peripheral mecha-
nisms (257,259,260). In experimental models of cardiovas-
cular dysfunction such as pacing-induced ventricular failure
or coronary occlusion and reperfusion in dogs, GLP-1 admin-
istration significantly improved ventricular function (261,262).
GLP-1 may also exert a direct effect on cardiovascular param-
eters through interaction with GLP-1Rs in the heart (263).
GLP-1 improved myocardial glucose uptake and cardiac
contractility in dogs with pacing-induced heart failure (262).
Furthermore, GLP-1 improved regional wall motion recov-
ery after transient coronary artery occlusion and a 24-hour
reperfusion period in dogs (261). Moreover, a 72-hour infu-
sion of GLP-1 in patients after acute myocardial infarction
and angioplasty resulted in markedly improved ventricu-
lar function (264). Conversely, GLP-1R signaling appears
essential for normal cardiac structure and function because
GLP-1R™ mice exhibit ventricular hypertrophy and an
impaired cardiovascular response to external stress (265).

Intracerebroventricular administration of GLP-1 inhibits
short-term food and water intake in rodents (225,266,267),
and peripheral administration promotes satiety and suppresses
energy intake in healthy, diabetic, and obese humans
(268-270). Pharmacologic administration of GLP-1 may
modify feeding behavior through direct interaction with
satiety centers, or through mechanisms involving induction
of interoceptive stress and visceral illness (271,272). The
recombinant GLP-1-albumin protein Albugon rapidly inhibits
food intake and activates neuronal c-fos expression without
directly penetrating the CNS (256). Administration of either
GLP-1 or noxious substances such as lithium chloride results
in a similar pattern of neuronal c-fos activation in rats and
elicits comparable aversive responses consistent with induc-
tion of visceral illness (272-275). Thus, the observation that
excess GLP-1 induces nausea and reduction of food intake
in human subjects may reflect activation of central aversive
signaling pathways.

Consistent with the cytoprotective actions of GLP-1 on
B cells, activation of GLP-1R signaling promotes neuronal
survival in diverse modes of cytotoxic injury (276,277).
Furthermore, GLP-1R™~ mice exhibit a learning deficit that
is improved after localized restoration of CNS GLP-1R
signaling and display enhanced sensitivity to neuronal injury
and increased seizure activity after kainate administration
(278). These findings have engendered interest in the poten-
tial use of GLP-1R agonists as neuroprotective agents (279).

GLP-1 also modulates components of the hypothalamic-
pituitary axis. GLP-1 stimulates cAMP formation and thyroid-
stimulating hormone (TSH) release from cultured mouse
pituitary thyrotrophs and isolated rat anterior pituitary cells
(280) and enhances luteinizing hormone-releasing hormone
secretion from rodent hypothalamic neuronal cell lines.
Furthermore central GLP-1 administration stimulates TSH,
luteinizing hormone, corticosterone, and vasopressin secre-
tion in rats (281,282); however, GLP-1R~~ mice do not exhibit
a major impairment of hypothalamic-pituitary function (283).
Nevertheless, short-term infusions of GLP-1 transiently
increase plasma levels of adrenocorticotropic hormone and
cortisol in healthy human subjects (284). Notably, experi-
mental evidence in rodents clearly indicates that systemic
administration of GLP-1 or exendin-4 results in rapid activa-
tion of brainstem proglucagon neurons, indicating that periph-
eral GLP-1 is capable of activating the CNS circuits that, in
turn, produce GLP-1 in the brain (285).

GLUCAGON-LIKE PEPTIDE-1 RECEPTOR
AGONISTS AND THE TREATMENT
OF TYPE 2 DIABETES

GLP-1 reduces blood glucose levels through stimulatory
effects on insulin secretion, reduction of glucagon secretion
and gastric emptying, and indirectly through promotion of
satiety leading to weight loss and improved insulin sensitivity.
Short-term administration of native GLP-1 rapidly decreases
plasma glucose in patients with type 2 diabetes (286—288).
Furthermore, postprandial administration of native GLP-1
significantly attenuated meal-related glycemic excursion in
diabetic patients, and a 3-week trial of preprandial subcuta-
neous GLP-1 injections improved postprandial glycemic
control and reduced plasma glucagon in subjects with type 2
diabetes (289). The efficacy of native GLP-1 for the treat-
ment of type 2 diabetes was illustrated in studies of contin-
uous subcutaneous GLP-1 infusion for 6 weeks. Subjects
treated with GLP-1 exhibited improved B-cell function,
decreased fasting and postprandial glucose levels, a signifi-
cant reduction in HbAlc, in association with modest weight
loss and improved insulin sensitivity (290). Hence, there are
considerable data from human clinical studies that adminis-
tration of native GLP-1 exhibits therapeutic utility in the
treatment of diabetic patients (291,292).

Nevertheless, the therapeutic use of native GLP-1 would
require multiple daily subcutaneous injections or continu-
ous administration via subcutaneous infusion, because of
the short circulating half-life of the native peptide in vivo
(98,103,293,294). Accordingly, considerable effort has been
devoted to development and characterization of GLP-1R
agonists that are resistant to DPP-IV-mediated degradation,
and that exhibit more prolonged durations of action in vivo.
Exendin-4 is a naturally occurring GLP-1-related peptide
isolated from the venom of the Heloderma suspectum lizard
(295). Exendin-4 exhibits 53% identity to mammalian GLP-1,
is a potent agonist at the GLP-1 receptor (155), and is
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encoded by a separate gene distinct from lizard GLP-1 (296).
Analysis of exendin-4 action in preclinical studies demon-
strates that exendin-4 is a long-acting GLP-1R agonist that
exhibits a full spectrum of GLP-1R—dependent actions in
normal and diabetic rodents (297-299).

Exendin-4, subsequently renamed Exenatide for clinical
use, also has been shown to potently reduce blood glucose
in human subjects with type 2 diabetes. Acute intravenous
infusion of exendin-4 to healthy volunteers reduced fasting
and postprandial glucose in association with inhibition of
gastric emptying and reduced food intake (300). Repeated
subcutaneous administration of exendin-4 for 4 weeks
improved blood glucose and significantly decreased HbAlc
(301). The clinical efficacy of Exenatide administration was
examined in a series of phase 2 and 3 trials in patients with
type 2 diabetes. Addition of Exenatide twice daily to treat-
ment regimens previously encompassing metformin, a
sulfonylurea, or both agents produced a significant reduc-
tion in HbAlc with prevention of weight gain in a 4-week
study (302,303). Exenatide has completed phase 3 clinical
trials as add-on therapy in diabetic patients with inade-
quate glycemic control who were treated previously with
metformin or a sulfonylurea agent, or both, and is the first
GLP-1R agonist approved for the treatment of type 2
diabetes.

Additional GLP-1R-based agonists in clinical develop-
ment include Liraglutide, a human DPP-IV-resistant
analogue that exhibits noncovalent binding to albumin and a
prolonged pharmacokinetic profile after once daily adminis-
tration (304,305). Liraglutide has completed phase 2 clinical
trials and significantly reduced HbAlc with no associated
weight gain in a 12-week monotherapy study (306). CIC-
1131 is a human GLP-1 analogue that forms a covalent bond
to human serum albumin and exhibits GLP-1R—dependent
actions in preclinical studies (242). CJC-1131 also has been
shown to effectively reduce glycemia in 12-week studies of
subjects with type 2 diabetes. Taken together, the available
evidence strongly suggests that one or more injectable
GLP-1R agonists may be used for the treatment of type 2
diabetes.

ENHANCING INCRETIN ACTION VIA
INHIBITION OF DIPEPTIDYL PEPTIDASE-IV

The rapid degradation of native GLP-1 has fostered
efforts directed at preventing GLP-1 degradation for the
treatment of diabetes. DPP-1V, also known as CD26, is a
widely expressed cell surface—associated peptidase that also
circulates as a soluble form in the plasma. DPP-1V cleaves
peptides at the position 2 alanine and appears to be essential
for normal glucose homeostasis, because mice with genetic
inactivation of CD26 exhibit increased levels of GLP-1 and
reduced glycemic excursion after glucose challenge (106).
Because DPP-1V is the dominant enzyme regulating GLP-1
degradation (98,103,106), considerable efforts have focused
on the development of DPP-IV inhibitors for the treatment
of type 2 diabetes. DPP-IV inhibitors reduce blood glucose,

stimulate insulin secretion, and increase the levels of intact
GLP-1 and GIP in preclinical models of diabetes (307-309).
Moreover, administration of DPP-IV inhibitors to human
subjects with type 2 diabetes results in significant reduction
of glycemia, together with decreased levels of circulating
glucagon and an improvement in the insulin/glucose ratio
(310,311). Several DPP-IV inhibitors currently are in late-
stage clinical development for the treatment of type 2
diabetes (291,292,312).

BIOLOGICAL ACTIONS OF GLUCAGON-
LIKE PEPTIDE-2

GLP-2 is a 33-amino-acid peptide cosecreted with GLP-1
from gut endocrine cells in a nutrient-dependent manner
(112,113). The principal biological consequence of exoge-
nous GLP-2 administration is the expansion of the mucosal
epithelium in the small bowel (169), caused by enhanced
crypt cell proliferation and a reduction in enterocyte apopto-
sis (313,314). The intestinotrophic actions of GLP-2, which
are summarized in Figure 6-3, have been demonstrated in mice
(169,315), rats (100,316,317), pigs (318,319), and human
subjects (320). GLP-2 also acutely enhances hexose transport
(321,322), reduces epithelial permeability (323), enhances
gut barrier function (324), and reduces gastric motility and
acid secretion (325,326) after exogenous administration
in vivo (see Fig. 6-3). Whether GLP-2 action is essential for
the growth and survival of the developing or adult mucosal
epithelium remains uncertain. Although GLP-2(3-33)
modestly attenuates exogenous GLP-2 action, it exhibits
properties of both a partial antagonist and a weak agonist
(327); hence, optimal tools for analysis of loss of GLP-2
action have not yet been identified.
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FIG. 6-3. The actions of glucagon-like peptide-2 (GLP-2)
in the gastrointestinal epithelium. GLP-2 secreted from gut
endocrine cells acts via gut endocrine cells, myofibroblasts, or
enteric neurons to promote diverse actions in the gut epithe-
lium. GLP-2R, glucagon-like peptide-2 receptor.
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The trophic and cytoprotective actions of GLP-2 also
have been examined in the setting of experimental intestinal
injury. GLP-2 facilitates mucosal adaptation in rats after
major small-bowel resection (317), and intravenous GLP-2
prevents mucosal hypoplasia in rats fed parenterally (328).
The extent of mucosal damage is markedly attenuated by
exogenous GLP-2 in mice with dextran-sulphate-induced
colitis (329) or after indomethacin-induced enteritis (330).
Similarly, GLP-2 administration improved intestinal disease
activity scores and survival in mice with chemotherapy-
induced enteritis (331), in rats with autoimmune enteritis
(332), and in rats after occlusion of the superior mesenteric
artery (333). Hence, pharmacologic GLP-2 administration
promotes intestinal healing and prevents mucosal injury in
a diverse number of experimental models of gut injury
(234,334).

GLUCAGON-LIKE PEPTIDE-2
ADMINISTRATION TO HUMAN SUBJECTS

Because exogenous GLP-2 administration significantly
increases the surface area and absorptive capacity of the
small-bowel epithelium, GLP-2 or structurally related GLP-2
analogues may exhibit therapeutic potential for the treat-
ment of human subjects with short bowel syndrome (335).
Administration of native GLP-2, 400 pg subcutaneously
twice daily for 35 days, to human subjects without a terminal
ileum and colon significantly improved energy absorption
and body weight, and increased lean body mass. GLP-2—
treated subjects exhibited reduced enteral fluid loss and
reduced gastric emptying but no change in small-bowel tran-
sit time (320). The potential therapeutic efficacy of a more
potent DPP-IV—resistant GLP-2 analogue currently is being
examined in separate clinical trials of patients with Crohn’s
disease or short bowel syndrome.

GLP-2 also appears to regulate bone mass through direct
effects on bone resorption. Administration of GLP-2 twice
daily to human subjects with short bowel syndrome reduced
markers of bone turnover in a 5-week study (336). Because
food ingestion is known to regulate gut hormone release and
bone resorption, the relation between gut peptides and bone
resorption was studied after single-dose administration of
various peptides in healthy postmenopausal women. Although
administration of GIP and GLP-1 had no significant effect
on bone turnover, GLP-2 reduced circulating levels of the
C-terminal telopeptide region of type I collagen and decreased
urinary excretion of dihydropyrimidine dehydrogenase (DPD)/
creatinine, both markers of bone resorption (337).

GLUCOSE-DEPENDENT INSULINOTROPIC
POLYPEPTIDE

Synthesis and Secretion

GIP, a 42-amino-acid peptide and the first incretin hormone
to be identified (338,339), is synthesized in and released

from intestinal K cells in response to nutrient ingestion, GIP
was originally identified on the basis of its ability to inhibit
gastric acid secretion in dogs, and subsequently was shown
to potentiate glucose-stimulated insulin secretion (338,339).
The sequence of GIP is highly conserved across species,
with more than 90% identity at the amino acid level for
human, rat, mouse, porcine, and bovine GIP. The peptides
encoded within the N- and C-terminal segments of pro-GIP
have no known biological function.

GIP is expressed predominantly in the stomach and in
the K cells of the proximal small intestine. GIP mRNA also
has been detected in the rat submandibular gland (73). There
is little information about the factors that regulate GIP
gene expression; however, nutrients up-regulate levels of
GIP mRNA in the rat duodenum and submandibular salivary
gland, whereas fasting significantly reduces levels of GIP
mRNA (340,341).

GIP secretion reflects the rate of nutrient absorption,
rather than the simple presence of nutrients in the small
intestine. Fat is a potent stimulus for GIP secretion in
humans, whereas in rodents and pigs, carbohydrates are more
effective secretagogues (342). GIP contains an alanine at
position 2 and is a substrate for enzymatic inactivation
by DPP-IV (293). The half-life of biologically active intact
GIP(1-42) is estimated to be less than 2 minutes in rats (103,
343) and approximately 7 and 5 minutes in healthy subjects
and patients with type 2 diabetes, respectively (343). After
intravenous infusion of GIP in humans, intact bioactive GIP
accounted for approximately 40% of the total detectable
amount of immunoreactive GIP, whereas only about 20% of
total immunoreactive GLP-1 remained intact in the same
studies (343). GIP is cleared through the kidney, and levels
of GIP are increased in patients with uremia or chronic renal
failure.

Biological Actions of Glucose-Dependent Insulinotropic
Polypeptide

The increasingly diverse actions of GIP on various tissues
are summarized in Table 6-2. The dominant actions of GIP
on the islet B cell are the enhancement of glucose-dependent
insulin secretion via increase of intracellular cAMP, inhibi-
tion of adenosine triphosphate—sensitive K* channels, increase
in intracellular Ca2*, and engagement of the B-cell secretory
machinery (344). GIP also enhances insulin gene transcrip-
tion and up-regulates the expression of glucose transporters
and glucokinase, which are components of cellular glucose
sensors (345). GIP functions as a B-cell growth factor for
islet B cells in vitro via activation of cAMP/PKA, MAPK,
and PIK-dependent pathways (346,347). Whether GIP is
also important for growth and survival of islet B cells in vivo
remains uncertain.

GIP also regulates adipocyte lipid metabolism (342) includ-
ing stimulation of glucose uptake and increases the sensi-
tivity of insulin-stimulated glucose transport. GIP enhances
fatty acid production and insulin-stimulated incorporation
of fatty acids into triglyceride, augments lipoprotein lipase
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TABLE 6-2. Summary of glucose-dependent insulinotropic
polypeptide action

Pancreas

Enhances glucose-stimulated insulin secretion
Stimulates insulin gene expression

Promotes B-cell proliferation and reduces B-cell apoptosis

Adipose tissue

Stimulates insulin-dependent glucose uptake

Increases insulin receptor affinity

Enhances fatty acid synthesis and incorporation into
triglyceride

Augments lipoprotein lipase synthesis and activity

Reduces glucagon-stimulated lipolysis

Bone

Stimulates alkaline phosphatase activity and collagen type |
messenger RNA

Increases bone mineral density in rodents

Other tissues

Up-regulates intestinal hexose transport

Stimulates glucocorticoid secretion in rodents

Modulates vascular bed-type—dependent endothelial tone

synthesis and activity, and reduces glucagon-stimulated
lipolysis in adipose tissue. GIP may also have lipolytic effects
in adipocytes (348). The signaling mechanism(s) activated
by GIP in adipocytes have not been fully elucidated (342).
Intriguingly, GIPR null mice are resistant to diet-induced
obesity and exhibit relative reductions in adipose tissue mass
after high fat feeding, together with a reduction in expres-
sion of the key enzyme Acyl CoA:diacylglycerol transferase 1
(Dgatl) in adipose tissue (186).

GIP may also regulate bone formation in osteoblast cells
including increases in alkaline phosphatase activity and levels
of collagen type I mRNA (178). GIP treatment increases bone
mineral density in the ovariectomized rat (349), although
acute administration of GIP to human subjects was not asso-
ciated with changes in markers of bone turnover (337). GIP
stimulates glucocorticoid secretion in rats via a cAMP/PKA-
dependent signaling pathway (350). Although GIP does not
appear to regulate cortisol secretion in healthy human subjects
(351), aberrant expression of the GIPR in adrenocortical
adenomas is associated with the pathogenesis of meal-induced
Cushing syndrome (351-353).

Glucose-Dependent Insulinotropic Polypeptide
Administration in Human Subjects

Because GIP stimulates glucose-dependent insulin secre-
tion, several studies have examined the therapeutic potential
of GIP for the treatment of type 2 diabetes. Remarkably,
although GIP is a potent insulinotropic agent in healthy
humans, GIP action is significantly diminished in human
subjects with type 2 diabetes (86,354). Unlike GLP-1, GIP
does not significantly inhibit glucagon secretion or gastric
emptying in humans (355,356). Although GIP analogs engi-
neered for resistance to DPP-IV action exhibit enhanced
insulinotropic properties in preclinical studies (357), the

potential of these analogs to reduce blood glucose in human
subjects with type 2 diabetes has not been carefully exam-
ined. Hence, the available evidence suggests that GIP is
unlikely to be a therapeutic candidate for the treatment of
diabetic human subjects (358).

Pancreatic Polypeptide

Pancreatic polypeptide (PP) is a structurally related member
of the peptide YY/neuropeptide Y (PYY/NPY) family. PP is
a 36-amino-acid peptide predominantly expressed in the
endocrine pancreas; however, rare PP-immunopositive
enteroendocrine cells have been described in some but not all
species (359). PP appears to preferentially recognize the NPY
4 receptor (360). PP secretion is stimulated by food ingestion
and exercise, and vagal tone is an important determinant regu-
lating PP secretion in rodents and human subjects.

Studies in rodents have also demonstrated an anorectic
role for either centrally or peripherally administered PP (361).
Intriguingly, PP not only reduces food intake but also
increases energy expenditure after intraperitoneal adminis-
tration in genetically obese mice (362). Similarly, transgenic
mice with PP overexpression in pancreatic islets exhibit
reduced milk intake during the neonatal period, with
decreased food intake together with reduced body weight a
feature of older PP transgenic mice (362). Although the
available evidence clearly implicates PP as a regulator of
food intake, whether PP is essential for body weight homeo-
stasis has not yet been determined.

The biological actions of PP in human subjects remain
somewhat obscure; however, PP, like PYY(3-36), exerts
anorectic actions in vivo. Administration of PP reduces food
intake in healthy human subjects (363) and in patients with
Prader—Willi syndrome (364).

Orexins

The orexin peptide families, also referred to as the hypo-
cretins, are produced predominantly in the CNS. Original
studies of orexin biology linked orexin action to the control
of feeding behavior (365), whereas more recent data have
implicated a role for orexins in the regulation of arousal and
sleep physiology (366,367). Orexin-like immunoreactivity
and orexin receptor mRNA transcripts have also been local-
ized to the enteric nervous system in both the submucosal
and myenteric ganglia (368). Intriguingly, fasting activates
orexin plus neurons in the gut, and circulating levels of
plasma orexin-A are increased after fasting in both rodents
and humans (369). Intriguingly, orexin is also secreted from
islet o and 3 cells in a glucose-dependent manner, and admin-
istration of orexin-A increases plasma levels of glucagon
and glucose in fasted rats (370). Both orexin and the OX2
receptor have been localized to enteroendocrine cells;
however, the precise function of the orexin system in gut
endocrine cells remains poorly understood.
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In summary, enteroendocrine peptides exert increasingly

complex actions on the control of gut motility, epithelial
integrity, cytoprotection, satiety, and pancreatic endocrine
function. The actions of many of these peptides, as revealed
through studies using antagonists and genetic loss of func-
tion mutants, are essential for control of glucose and energy
homeostasis. Moreover, GLP-1 and GLP-2 agonists are being
evaluated in clinical trials for the treatment of diabetes and
short bowel syndrome. Hence, understanding the pleiotropic
actions of these peptides has relevance for understanding the
biology of gut hormone action and the potential treatment of
specific human diseases.
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