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Abstract
Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiatemeal-
stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet β-cells. GIP and GLP-1 also regulate
glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed
beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of
extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of
incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing
predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain
mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that
require additional clarification.
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Abbreviations
CNS Central nervous system
CVOT Cardiovascular outcome trial
GIP Glucose-dependent insulinotropic polypeptide
GIPR Glucose-dependent insulinotropic polypeptide

receptor
GLP-1 Glucagon-like peptide-1
GLP-1R Glucagon-like peptide-1 receptor
GLP-1RA Glucagon-like peptide-1 receptor agonist
GPR G-protein-coupled receptor
HFpEF Heart failure and preserved ejection fraction
IEL Intraepithelial lymphocyte
LPS Lipopolysaccharide
MACE Major adverse cardiovascular events
MPGF Major proglucagon fragment
MTC Medullary thyroid cancer
NASH Non-alcoholic steatohepatitis

SGLT Sodium–glucose cotransporter
WAT White adipose tissue

History and discovery of incretin action

In 1902, the first hormone to regulate pancreatic exocrine secre-
tion, secretin, was revealed [1]. It was suspected that there would
also be hormonal regulation of metabolism, and after the discov-
ery of insulin, researchers began to think about incretins,
substances that could regulate insulin secretion similar to the regu-
lation of exocrine function by excretins [2]. Since insulin could not
yet be measured, these studies required complex cross-circulation
experiments [3], and incretin research hardly advanced. In 1964,
the radioimmunoassay for insulin enabled demonstration that oral
intake of glucose resulted in greater insulin secretion than i.v.
infusion (i.e. the incretin effect) [4, 5], presumably because of
intestinal release of incretin hormone(s), and the hunt to identify
the(se) hormone(s) began. By 1971, John Brown, who trained in
the laboratory of Victor Mutt in Stockholm, had isolated a candi-
date hormone from porcine intestine, a peptide of 42 amino acids,
which was first named as gastric inhibitory polypeptide (GIP) [6].
In 1973, Brown and JohnDupré tested its possible incretin activity
in humans using a purified porcine GIP preparation [7]. Indeed,
GIP cause a marked potentiation of glucose-stimulated insulin
secretion, and it was suggested that the peptide should be renamed
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glucose-dependent insulinotropic polypeptide (allowing the acro-
nym to be retained). Subsequent careful ‘mimicry’ experiments
(where levels of endogenous hormone concentrations are
mimicked by exogenous infusion) established GIP as an incretin
hormone, which was able to virtually fully explain the incretin
effect [8].

The interest in the new incretin hormone fostered hope that
incretins could promote insulin secretion in people with diabetes;
it was therefore disappointing when Krarup and colleagues
demonstrated in 1987 that porcine GIP did not stimulate insulin
secretion in people with type 2 diabetes [9], a finding that
extinguished interest in the incretin concept for many. In related
studies, Michael Nauck observed in 1986 that the incretin effect
was lost or severely reduced in people with type 2 diabetes [10],
making it unlikely that incretins would be useful therapeutically.
However, it was suspected early on that incretin action was
exerted by more than a single hormone. Indeed, numerous new
peptides capable of stimulating insulin secretion were isolated
from gut extracts in the laboratory of Erik Jorpes and Victor
Mutt in Stockholm, and the wealth of new peptides inspired
Werner Creutzfeldt to establish a set of criteria fulfilled by incretin
hormone activity.

A candidate incretin would have to be secreted into the circu-
lation upon glucose ingestion; neuropeptides (many of the insuli-
notropic peptides isolated in Mutt’s laboratory and elsewhere
turned out to be neuropeptides), therefore, would not qualify. It
would also have to stimulate insulin secretion in relevant concen-
trations and at relevant plasma glucose concentrations, defined as
those observed in relation to glucose intake [11]. Simultaneously,
evidence was accumulating that GIP was not the only incretin, as
immunoneutralisation of circulatingGIP only partially reduced the
incretin effect [12].Moreover, Kjeld Lauritsen and colleagues [13]
showed that the incretin effect (determined as the difference
between insulin responses to isoglycaemic oral and i.v. glucose
challenges) in individuals with small intestinal resections of vari-
ous lengths did not correlatewithGIP responses after oral glucose,
but rather with the length of distal small intestine still in continuity.
Thus, there had to be another incretin.

Interest focused on the products of the intestinal endocrine L
cells [14], which react with antibodies towards glucagon, and
glucagon was known to stimulate insulin secretion [15]. It turned
out that the L cells produced a peptide of 69 amino acids, initially
named glicentin, [16] whichwas assumed to represent at least part
of ‘proglucagon’ [17] because it contains the full glucagon
sequence at positions 33–61. Thus, glicentin (now known to be
a partial form of a proglucagon precursor) (Fig. 1) was shown to
be cleaved differentially in the alpha cells of the pancreatic islets
(releasing glucagon) and in the L cells (releasing glicentin and a
fragment corresponding to proglucagon 33–69 [designated
‘oxyntomodulin’]) [18]. Glicentin did not stimulate insulin secre-
tion; oxyntomodulin did but with low potency [19] and the circu-
lating concentrations were too low to cause stimulation of insulin
secretion. At the same time, molecular biology experiments with

cell-free translation of islet mRNA indicated that the real proglu-
cagon precursor was much larger than the 69 amino acids that
make up glicentin [20], engendering the question: what peptide
sequenceswere encoded in the rest of proglucagon, designated the
so called ‘major proglucagon fragment’ (MPGF)?

By the early 1980s, Joel Habener and colleagues deduced,
based on mRNA extracted from the endocrine islet organ
(Brockmann bodies) of the anglerfish, the full structure of
anglerfish proglucagon and found that a glicentin-like
sequence was located at the N-terminal part, but an additional
glucagon-like sequence was identified in the carboxy-terminal
region [21–23]. This exciting finding was followed by identi-
fication of the mammalian proglucagon sequence in 1983.
Graeme Bell and colleagues identified the sequences of
hamster and human proglucagon [24, 25], with other labs
rapidly elucidating the bovine [26] and rat [27] proglucagon
sequences. Unexpectedly, mammalian MPGF contained two
glucagon-like peptide sequences (Fig. 1). However, the
deduced human peptides, corresponding to proglucagon 72–
107 and 126–160, were inactive with respect to insulin secre-
tion. In contrast, native endogenous glucagon-like peptide-1
(GLP-1), extracted from human and porcine gut on the basis
of reactivity with antibodies, turned out to be potently insuli-
notropic in a perfused pancreas preparation [28]. The endog-
enous intestinal GLP-1 sequence corresponded to a truncated
form of GLP-1, formed by a monobasic cleavage between
residues 77 and 78 in proglucagon, resulting in an amidated
peptide with the full sequence of PG 78–106 amide [29]. At
the same time, studies in Boston demonstrated that a similarly
truncated peptide, GLP-1(7–37), stimulated glucose-
dependent insulin release directly from islet cells [30] and
the perfused rat pancreas [31]. A formal ‘incretin analysis’
in humans was published in December of 1987 from Steven
Bloom’s laboratory [32], clearly demonstrating the incretin-
like insulinotropic potential of GLP-1, which was actually
greater than that of GIP studied in the same experiments.
Comparative analyses based on radioimmunoassay measure-
ments revealed that both peptides, GLP-1 and GIP, stimulated
insulin secretion at the beginning of the meal, before any
appreciable increase in plasma glucose. Furthermore, their
insulinotropic action was potentiated by glucose elevations
corresponding to those induced by the intake of a meal [33].

Excitingly, and in contrast to GIP, GLP-1 was able to stim-
ulate insulin secretion to virtually normal levels during a
hyperglycaemic clamp in individuals with type 2 diabetes
[34]. Another feature of GLP-1 was its action to inhibit gluca-
gon secretion [35], whereas GIP stimulated glucagon secretion
[36]. These properties of GLP-1 addressed both the inadequate
insulin secretion and the hyperglucagonaemia characteristic of
type 2 diabetes, known to underlie the pathophysiology of
hyperglycaemia. Therapeutic proof of concept was provided
by the observation that 4 h of GLP-1 infusion normalised blood
glucose levels in people with long-standing type 2 diabetes,
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associated with increased insulin and decreased glucagon
levels; importantly, these actions of GLP-1 were attenuated as
glucose concentrations approached 5 mmol/l [37].

Physiology of GIP and GLP-1 in islet cells
and the incretin effect

The incretin effect is of major importance for normal glucose
tolerance. This was demonstrated in experiments where
increasing amounts of glucose were given to volunteers either
orally or (on a separate day) by i.v. infusions, yielding identi-
cal glucose excursions [38]. In these experiments, plasma
glucose excursions were virtually identical despite the much
larger oral vs i.v. doses, revealing a mechanism that would
prevent hyperglycaemia despite the greater amounts of
ingested oral glucose. The incretin effect, therefore, maintains
physiologically normal glycaemic excursions, regardless of
the doses of glucose or carbohydrates ingested. The underly-
ing mechanism was revealed to be greater insulin secretion
with oral vs i.v. glucose [38]. Subsequent studies showed that
the secretion of the incretin hormones followed the same
pattern in healthy control participants and in people with type
2 diabetes, supporting the comparatively greater stimulation
of insulin secretion with ingested glucose [39].

Elucidation of the physiology of endogenous GLP-1 was
enabled by use of exendin(9–39), a selective antagonist of the
mammalian GLP-1 receptor [40]. Similarly, an amidated
fragment of GIP, GIP(3–30)NH2, was demonstrated to be
a selective and potent GIP receptor antagonist in humans
[41]. Blocking both receptors by co-infusion of the incretin
receptor antagonists deteriorated glucose tolerance [42],
illustrating the importance of the incretin system in
humans. From the measurements of insulin secretion rates,
it could be calculated that GIP was responsible for about
half of the insulin responses to oral glucose, while GLP-1
and glucose alone were responsible for the remaining 30%
and 20%, respectively [43].

The receptors for GIP and GLP-1 are both expressed in
islet beta cells, explaining their direct insulinotropic effects.
GIP receptors (GIPR) and GLP-1 receptors (GLP-1R) are also
expressed in subsets of alpha cells (but with GLP-1R at very
low levels) [44]. Intra-islet glucagon, acting through the beta
cell GLP-1R and glucagon receptors, may also contribute to
the incretin effect, perhaps reconciling findings of low circu-
lating levels of GLP-1 yet substantial meal-stimulated GLP-
1R-dependent potentiation of insulin secretion [45, 46].
Similarly, incretin-like actions of GIP may also proceed indi-
rectly through amino acids and potentiation of GIPR-
dependent stimulation of glucagon secretion from alpha cells
[47]. Despite structural and functional similarity of the incretin
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Fig. 1 (a) A schematic of the
structure of proglucagon is
shown. Processing of
proglucagon-derived peptides
occurs in a tissue-specific
manner, with glucagon and
MPGF generated in the pancreas,
and glicentin, oxyntomodulin,
GLP-1, GLP-2 and intervening
peptide (IP)-2 generated in the
intestine and brain. (b) The
incretin effect is defined as the
augmentation of insulin secretion
when nutrients or glucose is
administered into the gut,
resulting in a greater increment in
insulin secretion, relative to an
isoglycaemic exposure achieved
through parenteral or i.v. glucose
infusion. The incretin effect is
diminished in people with type 2
diabetes, largely reflecting
impairment of beta cell function.
Asterisks denote significant
difference (p≤0.05). The original
conversion factor used was 1 mU/
l insulin = 7.3 pmol/l. Adapted
from Nauck et al [10] with
permission. This figure is
available as part of a
downloadable slideset
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receptors, it remains unclear why GIPR signalling is defective
in type 2 diabetes; the lack of GIP responsivity has been
ascribed to hyperglycaemia-associated switching of G protein
signalling in beta cells [48].

Circulating levels of GIP and GLP-1 in healthy
individuals and people with insulin
resistance, type 2 diabetes or obesity

The majority of GLP-1-producing L cells are located in the
distal gut, whereas GIP is synthesised within K cells predom-
inantly localised to the duodenum, with a small subset of
enteroendocrine cells producing both hormones [49]. GIP
and GLP-1 are secreted at low levels in the fasted or
interprandial state, and circulating levels rise briskly following
a meal or glucose ingestion [50]. Glucose activates enteroen-
docrine hormone secretion via the sodium–glucose
cotransporter 1 (SGLT1) [51]. Lipids and fatty acids also stim-
ulate incretin secretion via fatty acid receptors such as G-
protein-coupled receptor (GPR) 40 and GPR119 [52, 53].
The transporters and receptors coupling protein and amino
acids to GIP and GLP-1 secretion are less well understood,
and are mediated through diverse mechanisms, including acti-
vation of the calcium sensing receptor [54]. Oral administra-
tion of amino acids stimulates GIP as well as GLP-1 secretion
in healthy humans [55].

The presence or absence of type 2 diabetes does not mean-
ingfully impair the secretion of either hormone. In large popu-
lation studies of people with type 2 diabetes, a modest impair-
ment of GLP-1 secretion was identified [56]. Obesity, on the
other hand, is frequently associated with decreased GLP-1
secretion. In animals, obesity does not impair GIP or GLP-1
secretion from isolated perfused preparations of small intes-
tine, and weight loss does not influence GLP-1 secretion [57].
In humans with obesity, levels of GLP-1, and to a lesser extent
GIP, increased after diet-induced weight loss in some [58, 59],
but not all [60], studies.

GIP and GLP-1 glucoregulatory actions in type
2 diabetes

Insulin responses to both GIP and GLP-1 infused to mimic
normal postprandial concentrations during a hyperglycaemic
clamp were markedly diminished in people with long-
standing type 2 diabetes, and were improved, but not normal-
ised, after 4 weeks of insulin therapy [61]. Supraphysiological
levels of GLP-1, but not GIP, achieved via infusion restored
insulin responses to normal levels [62]. In experiments admin-
istering GIP and GLP-1 individually or together, only GLP-1
infusions lowered plasma glucose and suppressed glucagon,

whereas simultaneous infusion of GIP abolished the inhibition
of glucagon observed with GLP-1 [63].

Short term studies employing a 5 h infusion of GIP in
individuals with type 2 diabetes who had already been treated
with long-acting GLP-1R agonists (GLP-1RAs) had little
acute effect on appetite or energy expenditure, and plasma
glucose actually increased due to enhanced glucagon levels
[64]. Similarly, continuous subcutaneous administration of
native GIP for 6 days in men with type 1 diabetes increased
hepatic steatosis but had little impact on a wide range of meta-
bolic variables, including markers of bone resorption,
biomarkers of inflammation, and body weight [65].
Nevertheless, unimolecular GIP–GLP-1 co-agonism is an
effective therapy for type 2 diabetes, associated with weight
loss and reduction of fat mass, in rats, mice, monkeys and
humans [66].

A balanced GIP–GLP-1 co-agonist (equal GIP and GLP-1
potency) developed by DiMarchi and colleagues was studied
in people with type 2 diabetes over 12 weeks but did not
demonstrate beneficial metabolic actions beyond those
achieved in an open label control arm of people treated with
liraglutide [67]. In contrast, in 2018, the long-acting GIP–
GLP-1 co-agonist tirzepatide was found to have substantial
glucose-lowering and weight loss properties, to a greater
extent than that achieved by GLP-1R agonism with
dulaglutide [68], findings replicated in Phase III trials compar-
ing tirzepatide with semaglutide in people with type 2 diabetes
[69]. Tirzepatide is a biased agonist favouring cAMP produc-
tion over β-arrestin recruitment, which may reduce receptor
internalisation and potentially enhance GLP-1 signalling [70]

GLP-1 and control of gastric emptying:
normal physiology and diabetes

GLP-1 inhibits gastrointestinal motility and gastric secretion
(Fig. 2). During GLP-1 infusions, the stomach completely
loses its tone and becomes flaccid [71]. In pig experiments,
GLP-1 inhibited efferent vagal activity [72]. In humans,
vagotomy abolished the inhibitory effects of GLP-1 on gastric
emptying, as well as the inhibition of the vagal marker,
pancreatic polypeptide [73]. Consistent with these findings,
genetic attenuation of mouse GLP-1R expression within auto-
nomic (including vagal) neurons reveals a role for physiolog-
ical GLP-1R signalling in the basal control of gastric empty-
ing [74]. The inhibitory effect of native GLP-1 on gastric
emptying shows rapid tachyphylaxis (within hours) and disap-
pears upon continued stimulation [75]. The inhibitory actions
of long-acting GLP-1RAs on gastric emptying in people with
type 2 diabetes or obesity is more variable, with substantial
tachyphylaxis evident in some [76], but not all [77], studies.
Reduction of gastric emptying contributes substantially to the
postprandial glucose control achieved with the short acting
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GLP-1RAs such as exenatide twice daily (exenatide BID) and
lixisenatide. GLP-1 also attenuates small bowel motility,
enhancing time for enzymatic nutrient digestion and absorp-
tion. Following gastrectomy, a higher rate of nutrient transit
with energy-dense liquid meals produces a large GLP-1 secre-
tory response, resulting in diarrhoea and, in some cases,
hypoglycaemia [78]. In contrast, GIP does not impact gut
motility or gastric emptying.

GIP, GLP-1 and appetite: physiology
and central nervous system mechanisms

The approval of liraglutide 3 mg once daily for people with
obesity was followed by the development of semaglutide
2.4 mg once weekly [79], resulting in up to 18% weight loss
after 68 weeks [80]. GLP-1Rs are widely distributed in the
central nervous system (CNS) (Fig. 3) [81], and the use of site-
specific brain injections, together with chemogenetics
targeting distinct GLP-1R+ populations, illustrates consider-
able redundancy in GLP-1R+ sites coupled to reduction of

food intake. Although autonomic and peripheral GLP-1R+
neurons, including those within the nodose ganglion, may
partially contribute to the weight loss actions of peripherally
administered GLP-1RA [74, 82], ablation of CNS neurons
targeted by nestin-Cre or Wnt1-Cre abolishes the anorectic
actions of peripherally administered GLP-1RA in mice [74,
83]. Whether GLP-1RAs simply engage CNS GLP-1Rs
accessible via circumventricular organs or are actively
transported to brain regions via GLP-1Rs within the blood
brain barrier, such as those expressed in tanycytes [84],
remains a topic of ongoing investigation (Fig. 2).

The physiological effects of endogenous intestinal GLP-1
on food intake and body weight are comparatively modest.
Although GLP-1 released from the gut may interact with local
GLP-1R+ sensory nerve fibres communicating signals to the
parabrachial nucleus that enable meal termination [85], the
importance of these circuits for long-term control of body
weight has not been established. Transient interruption of
GLP-1R signalling using antagonists of the GLP-1R increases
food intake and weight gain in animals [86] and humans [87].
However, GLP-1 receptor knockout mice do not become
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Fig. 2 Physiological vs pharmacological actions of GLP-1. Nutrients
stimulate GLP-1 secretion from gut L cells, where it may engage local
GLP-1R+ sensory afferent neurons within the gut originating in the
nodose ganglion, which then activate neurons within the nucleus of the
solitary tract (also known as the nucleus tractus solitarii; NTS).
Alternatively, intrahepatic GLP-1R+ neurons, including a subset within
the portal system, may be activated by circulating GLP-1and communi-
cate ascending GLP-1R-dependent signals to the brain. Ascending fibres

from solitary tract neurons may generate reflexes in the hypothalamus,
and descending signals from the brainstem or hypothalamus may activate
vagal motor neurons that send stimulatory or inhibitory impulses to the
pancreas and the gastrointestinal tract. Exogenously administered or
endogenous circulating GLP-1 may act independently of the gut–brain
axis to directly engage GLP-1Rs in the brain to reduce food intake and
body weight, and in the pancreas to stimulate insulin and inhibit glucagon
secretion. This figure is available as part of a downloadable slideset
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obese [88], and deletion of the mouse Gcg gene (encoding
GLP-1) from the entire intestine, resulting in a 90% reduction
of circulating GLP-1, does not perturb food intake or weight
gain [89].

Chemogenetic activation of hypothalamic GIPR+ neurons
reduces food intake in mice [90], and GIP reduces food intake
when given peripherally (in mice) or via intracerebroventric-
ular injection [91, 92]. However, its anorectic effects and
impact on weight loss are comparatively modest relative to
those observed with GLP-1R agonism. GIP is not known to
interact with the peripheral autonomic nervous system, but its
appetite inhibiting effect in rodents requires interaction with
cerebral GIPR [92]. Paradoxically, reduction of intestinal GIP
expression [93], GIPR antagonism [94] or genetic elimination
of GIPR [95], also reduces food intake and promotes resis-
tance to diet-induced obesity and weight loss in multiple
species. GIPR agonism may indirectly potentiate the tolerabil-
ity of co-administered GLP-1RA through attenuation of CNS
GLP-1-activated aversive circuits [96].

GLP-1 and GIP in the cardiovascular system

GLP1 action in the cardiovascular system The widespread
distribution of GLP-1R expression within the heart, blood
vessels, immune system and brain regions (Fig. 3) controlling

autonomic function [97–99] has sparked considerable interest
in the cardiovascular biology of native GLP-1 and GLP-1RA.
Both native GLP-1 and GLP-1RA exert multiple actions in the
cardiovascular system, including reduction of blood pressure
in hypertensive individuals, inhibition of postprandial chylo-
micron secretion, attenuation of inflammation in the heart and
blood vessels, and reduction of ischaemic cardiac injury, but
also increases in heart rate (Fig. 3) [100, 101]. Multiple long-
acting GLP-1RAs reduce rates of major adverse cardiovascu-
lar events (MACE) in outcome trials of people with type 2
diabetes [102], heightening interest in understanding the
mechanisms linking GLP-1R activation to cardioprotection.

Interpretation of the cardiovascular actions of native GLP-1
requires consideration that carboxy- terminal fragments, such as
GLP-1(9–36) and GLP-1(28–36), the latter generated from
neutral endopeptidase-mediated proteolytic cleavage, retain
biological activity in the cardiovascular system through mecha-
nisms independent of the canonical GLP-1R. These actions may
be mediated through regulation of soluble adenylate cyclase 10
and mitochondrial activity controlling glycolysis and glucose
oxidation [103, 104]. Nevertheless, multiple degradation-
resistant and structurally distinct GLP-1RAs do not generate
the same GLP-1 metabolites yet reduce blood pressure, increase
heart rate, inhibit enterocyte chylomicron secretion and reduce
the extent of myocardial infarction in rats and mice through
mechanisms requiring the canonical GLP-1R [99, 105–108].
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available as part of a
downloadable slideset

Diabetologia

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-05906-7/MediaObjects/125_2023_5906_MOESM1_ESM.pptx


Delineation of mechanisms linking GLP-1R activation
to cardioprotection and reduction of myocardial injury is
difficult in part due to low levels of GLP-1R expression in
target organs such as the heart, as well as the species-
specific differences in the distribution of cardiac GLP-
1Rs [98, 109]. For example, single cell RNA-seq analyses
reveal that cardiac GLP-1Rs are expressed in some atrial
and ventricular endothelial cells, and localised to the
ventricular endocardium in mice; genetic ablation of
murine GLP-1Rs within this endothelial cell population
attenuates the acute cardioprotective actions of liraglutide
in the setting of myocardial ischaemic injury [99]. In
contrast, GLP-1Rs are relatively more abundant in human
ventricles than mouse ventricles [109], and single cell
RNA-seq interrogation of the normal and ischaemic human
heart localises cardiac GLP-1Rs to subpopulations of atrial
and ventricular cardiomyocytes [99].

GLP-1RAs also reduce the rates of stroke in cardiovas-
cular outcome trials (CVOTs) in people with type 2 diabe-
tes [110, 111], and are neuroprotective in experimental
models of stroke and cerebral infarction (Fig. 3) [112].
Putative mechanisms linking GLP-1R activation to reduced
rates of stroke are still emerging. Liraglutide attenuates
thromboxane-induced platelet aggregation in people with
obesity after several weeks of treatment [113], findings
associated with platelet binding of LUXendin645, a fluo-
rescent GLP-1RA, to platelets ex vivo. Moreover, the bind-
ing of LUXendin645 and the reduction of platelet aggrega-
tion by liraglutide was attenuated by the GLP-1R antago-
nist exendin(9–39) [113]. Nevertheless, a more careful
analysis is required to determine whether human platelets
express a functional canonical GLP-1R that can transduce a
sustained reduction in platelet aggregation [114]. This
analysis would ideally include the demonstration of full
length GLP1R mRNA in platelets or platelet precursors.

SGLT-2 inhibitors reduce the rates of heart failure and
MACE within weeks of administration [115]. However, the
temporal reduction of MACE events in people with type 2
diabetes treated with GLP-1RA takes longer, becoming
evident from 12 to 18 months from trial initiation [115,
116]. GLP-1RAs reduce hospitalisation for heart failure
events in people with type 2 diabetes by ~11% in CVOTs
[102]. However, a subset of individuals with type 2 diabetes
and a history of hospitalisation for heart failure and/or
impaired ventricular function (ejection fraction of <25%
[117] or <35% [118]) do not exhibit improvements in heart
failure and are not ideal candidates for GLP-1RA therapy.
Given the association of weight loss with improved functional
status in people with heart failure and preserved ejection frac-
tion (HFpEF), the potential benefits of semaglutide are being
examined in people with HFpEF (Fig. 4) and a BMI >30 with
(ClinicalTrials.gov registration no. NCT04916470) or without
type 2 diabetes (NCT04788511).

The time to reduction in MACE observed in the GLP-1RA
CVOTs is consistent with a more chronic process, such as a
reduction in atherosclerosis. GLP-1RAs reduce experimental
atherosclerosis in genetically sensitised mouse models, find-
ings associated with reduction of systemic and aortic inflam-
mation [119, 120]. Endothelial cells are the major cellular site
of GLP-1R expression in the mouse aorta; however, genetic
elimination of endothelial and hematopoietic GLP-1Rs in
mice with atherosclerosis did not diminish the anti-
atherogenic actions of semaglutide [120]. Whether GLP-
1RAs reduce vascular inflammation and atherosclerosis in
people with type 2 diabetes remains uncertain. Imaging of
the carotid arteries and aorta using [18F]fluorodeoxyglucose
positron emission tomography did not detect reduction of
inflammation after 26 weeks of daily liraglutide therapy
[121]. The potential benefits of semaglutide 1mg onceweekly
in people with atherosclerosis and peripheral artery disease
(Figs 3, 4) are being examined over 52 weeks, with the prima-
ry outcomes of treadmill walking distance and secondary
outcomes of changes in quality of life and pain free walking
distance (NCT04560998).

GIP action in the cardiovascular system The development of
the GLP-1R–GIPR co-agonist tirzepatide for type 2 diabetes
has sparked resurgent interest in the cardiovascular actions of
GIP. GIPR is expressed in a subset of vascular endothelial
cells, and in preclinical studies, activation of GIPR signalling
attenuates, whereas loss of GIPR signalling exacerbates, the
development of aortic inflammation and atherosclerosis [122,
123]. GIPRs are expressed at low levels in the mouse [124]
and human heart [109] within populations of atrial and
ventricular cardiomyocytes, adipocytes and pericytes [99].
Activation of GIPR signalling attenuates cardiac hypertrophy
and fibrosis in mice with experimental hypertension [125],
whereas loss of cardiomyocyte GIPR signalling is cardiopro-
tective in mice with ischaemic cardiac injury secondary to
coronary artery occlusion [124]. A meta-analysis of incident
MACE in the Phase III tirzepatide clinical trial programme for
type 2 diabetes revealed evidence for cardiovascular safety
and numerically fewer MACE events in people randomised
to tirzepatide therapy [126]. The cardiovascular safety of
tirzepatide is also being studied in two larger dedicated
CVOTs in people with type 2 diabetes, and in people living
with overweight and obesity.

GLP-1 and GIP in the immune system

GLP-1-producing enteroendocrine L cells sense sterile or
microbial inflammation and respond with an increase in
GLP-1 secretion [101], findings reported to be mimicked by
administration of cytokines [127] or lipopolysaccharide (LPS)
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[128]. Furthermore, blockade of the IL-6 receptor with toci-
lizumab reduces meal-stimulated levels of GLP-1 in people
with type 2 diabetes or obesity [129]. The extent of systemic
inflammation and the magnitude of increase in circulating
levels of GLP-1 correlates with outcomes in people with
sepsis or myocardial infarction [130, 131], although levels of
GLP-1 are not universally elevated in people with acute or
chronic inflammation [132]. Conversely, GLP-1RAs reduce
inflammation in animals and humans with or without type 2
diabetes, independent of weight loss, with systemic anti-
inflammatory actions evident within minutes to hours follow-
ing acute administration of native GLP-1 [133] or GLP-1RAs
[134–136].

The most abundant cellular site of GLP-1R expression in
the immune system is the intestinal intraepithelial lymphocyte
(IEL) (Fig. 3), and loss of Glp1r enhances the expression of
proinflammatory biomarkers in the mouse intestine [137].
Surprisingly, despite the broad systemic anti-inflammatory
actions of GLP-1RAs, much (100–1000 fold) lower levels of
GLP-1R mRNA transcripts are detected in spleen, thymus,
lymph nodes and hematopoietic cell lineages, relative to levels
of GLP-1R expression in gut IELs [138, 139], suggesting that
a substantial proportion of GLP-1 action on immune cells may
be indirect. The anti-inflammatory pathways engaged by
GLP-1RA to suppress T cell driven gut- and systemic inflam-
mation, as exemplified in studies using anti-CD3, require
signalling through the IEL GLP-1R [136]. In contrast, the
actions of GLP-1RAs to reduce systemic inflammation, as
modelled by administration of LPS, are independent of the
IEL GLP-1R [136]. It seems likely that inter-organ communi-
cation, perhaps facilitated by neural pathways, contributes to

the widespread anti-inflammatory actions of GLP-1 in tissues
that do not contain GLP-1R+ immune cells [98].

GLP-1RAs also reduce experimental inflammation in the
heart [140], islets [141], blood vessels [119], kidney [142,
143], lung [144, 145] and brain [146]. These anti-
inflammatory actions may contribute to reduction of diabetes-
associated complications in people treated with chronic GLP-
1RA therapy. The GLP-1R is also expressed in astrocytes, and
genetic loss of GLP-1Rs in mouse astrocytes increases hypo-
thalamic inflammation and gliosis in high-fat diet-fed germ-
free mice [147].

The direct and indirect anti-inflammatory actions of GLP-
1RA may also contribute to resolution of hepatic inflamma-
tion in people with metabolic liver disease and non-alcoholic
steatohepatitis (NASH) (Figs 3, 4) [148]. Both liraglutide and
semaglutide suppress hepatic inflammation (Fig. 3) while
preventing progression of fibrosis in people with NASH
[149, 150]. Nevertheless, semaglutide 2.4 mg once weekly
was less effective in achieving resolution of NASH when
administered to individuals with both NASH and compensat-
ed cirrhosis [151]. The GLP-1R is not expressed in hepato-
cytes, hence the hepatic anti-inflammatory actions of GLP-
1RAs are thought to be primarily indirect, perhaps secondary
to weight loss [148]. The GLP-1R is expressed on a small
subset of murine intrahepatic endothelial and γδ T cells, and
genetic elimination of Glp1r in these cells attenuated the anti-
inflammatory actions of semaglutide in the livers of HFD-fed
mice [120]. The therapeutic potential and anti-inflammatory
actions of semaglutide 2.4 mg once weekly in people with
NASH (Fig. 4) is being assessed in the Phase III ESSENCE
trial (NCT04822181).
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GIPR is expressed at low levels in some immune cells,
predominantly in subsets of T cells and macrophages [139].
Within the bone marrow, GIPR is expressed in myeloid precur-
sors, and loss of GIPR inGipr−/−mice, or more selective loss of
the bone marrow Gipr, impairs formation of myeloid lineage
cells [152, 153]. Conversely, administration of GIP receptor
agonists to normal mice or mice exposed to chemotherapy,
LPS or the TLR1/TLR2 agonist Pam3CysSerLys4 had little
effect on circulating or bone marrow hematopoietic cell popula-
tions [153]. Activation of GIPR signalling reduced white
adipose tissue (WAT) inflammation, characterised by reduced
accumulation of monocytes and macrophages in WAT from
HFD-fed mice [154]. In contrast, chronic administration of
GIP to obese mice [155], or short term GIP infusion within
WAT of humans [156], augments adipose tissue inflammation,
characterised by increased infiltration of mononuclear cells and
enhanced cytokine expression. Genetic elimination or marked
reduction of GIPR in murine bone marrow or myeloid cells
results in enhancedWAT andmacrophage-driven inflammation,
associated with upregulation of the alarmin S100A8/9 in
myeloid cells [153, 157]. Although human data examining the
effects of continuous GIP administration are limited, subcutane-
ous infusion of GIP for 6 days in men with type 1 diabetes did
not alter biomarkers of inflammation in the circulation or in
WAT [65].

The safety of incretin-based therapies

The widespread extrapancreatic expression of GLP-1 and
GIPR raises questions surrounding the long-term consequences
of incretin-based therapies for type 2 diabetes and obesity.
Interpretation of reports of GLP-1R expression in some cancers
is challenged by problems with accurate receptor ascertain-
ment, reflecting use of poorly characterised antibodies with
insufficient sensitivity and specificity [98, 109, 158, 159].
Interrogation of GLP-1R expression in human cancers has also
been carried out indirectly using radiolabelled GLP-1R agonist
and antagonist peptides. GLP-1R binding sites were detected in
islet and neuroendocrine tumours, as well as in a subset of brain
tumours [160]. Binding sites were also localised to a minority
of ovarian and prostate cancers, although GLP-1R binding sites
were not detected in colorectal, lung, liver, stomach or pancre-
atic cancers [160, 161]. A combination of immunohistochem-
istry and in situ autoradiography failed to detect GLP-1R
expression in ductal pancreatic cancer or in well-differentiated
thyroid cancer, although several medullary thyroid cancers
contained GLP-1R+ cells [162].

The incidence of malignancy in people with type 2 diabetes
treated with GLP-1RA has been scrutinised in CVOTs, as well
as in real-world data. A meta-analysis of 45 trials (94,063
participants), including people with type 2 diabetes enrolled
in CVOTs, did not reveal an imbalance between use of GLP-

1RA and the incidence of benign or malignant thyroid disease
[163]. Interrogation of real-world data sets using the Explorys
system to assess cancer rates in 300 different healthcare systems
in the USA following initiation of GLP-1RA therapy in 64,230
individuals with type 2 diabetes revealed lower rates of pros-
tate, lung and colon cancer, but higher rates of thyroid cancer
[164]. GLP-1RAs are contraindicated in people with a family
history of medullary thyroid cancer (MTC) or multiple endo-
crine neoplasia type 2, and an ongoing registry of MTC cases
has been established for surveillance purposes [165].

GIPR agonists have not been utilised in the clinic, hence less
is known about the potential effects of manipulating GIPR
signalling in the context of cancer. GIPR is upregulated in a
subset of people with bilateral macronodular adrenal hyperplasia
and food-induced Cushing’s syndrome [166]. GIPR expression
has also been detected, using in situ ligand binding, in a wide
range of human neuroendocrine tumours [167]. However, the
functional implications, if any, of these findings for long-term
manipulation of GIPR signalling in the clinic is not known.

GLP-1, GIP and neurodegenerative disorders

Physiological and pharmacological GLP-1R signalling regu-
lates learning, behaviour, neuronal integrity and resistance to
experimental brain injury in animals [112]. Similarly, rates of
stroke [110, 111], and new diagnoses and progression of
cognitive impairment [168] are reduced in post hoc analyses
of secondary endpoints in CVOTs of GLP-1RA in people
with type 2 diabetes. Moreover, GLP-1RAs suppress neuro-
inflammation in preclinical studies [101, 146], and exenatide,
given either twice daily or once weekly, improved disease
activity scores in people with Parkinson’s disease [169,
170]. Substantial preclinical data demonstrate the therapeutic
potential of GLP-1RA and GIP–GLP-1RA co-agonists in
mouse models of neurodegeneration, findings associated with
preservation of brain structure and function, and reduction of
neuroinflammation [171]. The therapeutic potential of oral
semaglutide once daily is being explored in two clinical trials,
in populations with and without co-existing vascular disease,
studying people at risk of developing Alzheimer’s disease
(NCT04777396 and NCT04777409).

Summary

Substantial clinical trial and real-world data has demonstrated
the efficacy and long-term safety of GLP-1RAs in people with
type 2 diabetes. However, much less long-term data are avail-
able for these agents in people with obesity. Ongoing outcome
trials (Fig. 4) will ascertain the risks vs benefits in people
living with obesity. GLP-1RAs are also being explored in
ongoing trials in people at risk for diabetic kidney disease,
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people with HFpEF, people with NASH and individuals with
peripheral artery disease (Fig. 4). The results of these trials will
further refine, andmay expand, the clinical utility ofGLP-1RAs in
important subpopulations with metabolic disorders. Progress in
precision medicine approaches using genetics and biomarkers
may identify subgroups of people that are ideally suited (or less
responsive) to incretin-based therapies, enablingmore targeted use
of different therapeutic agents [172]. The development of
tirzepatide and ongoing investigation of GLP-1-based multi-
agonists has opened up an exciting new chapter in GLP-1 phar-
macology [173], with an expanding range ofmolecules producing
impressive results in early clinical trials. Each one of these agents
will need to be carefully scrutinised to ensure they preserve or
exceed the benefits and safety profile of GLP-1RA alone, without
introduction of unanticipated new liabilities impacting therapeutic
safety. Taken together, the clinical impact of GLP-1RA over 2
decades has been substantial and seems likely to be expanded,
based on forthcoming clinical trial data and investigational drug
development activity, in the years to come.

Supplementary Information The online version contains a slideset of the
figures for download, which is available at https://doi.org/10.1007/
s00125-023-05906-7.
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