
Symposium: Glucagon-Like Peptide 2:
Function and Clinical Applications

Dual Regulation of Cell Proliferation and Survival via Activation
of Glucagon-Like Peptide-2 Receptor Signaling1,2

Jennifer L. Estall* and Daniel J. Drucker*†3

Departments of *Laboratory Medicine and Pathobiology and †Medicine, Banting and Best Diabetes Centre,
Toronto General Hospital, University of Toronto, Toronto, Ontario Canada M5G 2C4

ABSTRACT Peptide hormones regulate cell viability and tissue integrity, directly or indirectly, through activation
of G-protein–coupled receptors via diverse mechanisms including stimulation of cell proliferation and inhibition of
cell death. Glucagon-like peptide-2 (GLP-2) is a 33 amino acid peptide hormone released from intestinal endocrine
cells following nutrient ingestion. GLP-2 stimulates intestinal crypt cell proliferation leading to expansion of the
gastrointestinal mucosal epithelium. Exogenous GLP-2 administration attenuates intestinal injury in experimental
models of gastrointestinal disease and improves intestinal absorption and nutritional status in human patients with
intestinal failure secondary to short bowel syndrome. GLP-2 also promotes mucosal integrity via reduction of
injury-associated apoptosis in the intestinal mucosa and directly reduces apoptosis in cells expressing the GLP-2
receptor in vitro. Hence, the regenerative and cytoprotective properties of GLP-2 contribute to its therapeutic
potential for the treatment of patients with intestinal disease. J. Nutr. 133: 3708–3711, 2003.
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Glucagon-like peptide 2 (GLP-2)4 is produced in and se-
creted from enteroendocrine L cells following posttransla-
tional processing of proglucagon by prohormone convertase
1/3 (1–3). Intestinal proglucagon-derived peptides (PGDP)
liberated with GLP-2 include oxyntomodulin, glicentin,

GLP-1 and two intervening peptides, IP-1 and IP-2 (Fig. 1)
(4,5). GLP-2 is also produced in the brainstem. Circulating
levels of GLP-2 are low in the fasting state and increase
following nutrient ingestion (6–8). GLP-2 has a half-life of
minutes due principally to rapid inactivation following cleav-
age by dipeptidyl peptidase IV in vivo (6,9,10), and in part due
to renal clearance (11,12).

Stimulation of cellular proliferation by GLP-2

Small bowel villus hyperplasia detected in human patients
with proglucagon- producing tumors suggests that one or more
specific PGDP exhibit intestinal growth factor-like activity
(13–15). GLP-2 administration to rodents increases small
bowel weight and mucosal crypt and villus height (9,16–19).
Subsequent studies demonstrated that GLP-2 increases intes-
tinal nutrient absorption (17,20,21), decreases motility
(22,23), enhances barrier function (18), increases mucosal
hexose transport and digestive enzyme expression (17,24–26)
and decreases gastric acid secretion (27). Although the small
bowel mucosa is comparatively more sensitive to the trophic
effects of GLP-2, the administration of degradation-resistant
GLP-2 analogues or the wild-type molecule also promotes
mucosal growth in the large bowel (19,28).

The lack of specific potent GLP-2 antagonists has ham-
pered delineation of the physiological importance of endoge-
nous GLP-2. GLP-2 (3–33) exhibits both weak antagonist and
partial agonist activity (29), complicating its use for elucida-
tion of physiological GLP-2 actions. Upregulated circulating
levels of the PGDP including GLP-2, have been detected in
untreated diabetic rats, and may be implicated in the genera-
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tion of increased intestinal mass observed in diabetic rodents
(30,31). Levels of circulating GLP-2 increase rapidly following
rat small bowel resection (32) and immunoneutralization of
GLP-2 using polyclonal antisera partially attenuates the intes-
tinal growth response in diabetic rats (31). GLP-2 also in-
creases intestinal weight and villus height in neonatal pigs
(33). The actions of GLP-2 in the brain are less clear; although
intracerebroventricular GLP-2 administration modestly inhib-
its food intake in rats and mice, the physiological importance
of GLP-2 as an anorexic peptide is uncertain (34,35).

The increase in bowel weight and mucosal thickness fol-
lowing GLP-2 administration is due principally to the stimu-
lation of crypt cell proliferation, leading to lengthening of the
intestinal villi and a modest expansion of the crypt compart-
ment (16,19,36,37). Microscopic analysis of GLP-2–treated
small bowel mucosa reveals a considerable increase in the
number of microvilli, providing yet another mechanism for
expansion of the mucosal absorptive surface area (18). Ro-
dents treated with GLP-2 exhibit increased DNA and protein
content in the small bowel and colon (21,38) and an increased
crypt cell proliferation rate in the small intestine (36). GLP-
2-induced crypt cell proliferation in the large bowel has been
observed in parenterally, but not orally fed rats (19). Signifi-
cantly increased small bowel weight can be maintained with
repeated daily subcutaneous administration of GLP-2 for at
least 12 wk; cessation of peptide treatment results in normal-
ization of bowel mass within days of peptide withdrawal (36).

The intestinotrophic actions of GLP-2 are largely indirect,
consistent with the localization of GLP-2 receptors to murine
enteric neurons and human enteroendocrine cells (39,40).
Although the downstream mediators of GLP-2 action on
growth and apoptosis remain unknown, the GLP-2–depen-
dent stimulation of intestinal glucose uptake and blood flow is
blocked by N�-nitro-L-arginine methyl ester, implicating a
role for nitric oxide in the transduction of specific GLP-2
signals (41). At pharmacological doses, GLP-2 stimulates cell
proliferation measured by increased [3H]-thymidine incorpo-
ration in intestinal cell lines not shown to express the cloned
GLP-2 receptor in vitro (42,43). Similarly, GLP-2 promotes
cell proliferation in baby hamster kidney (BHK) cells stably
expressing a transfected rat GLP-2 receptor (44) and in pri-
mary cultures of rat astrocytes derived from the cerebral cortex
(45).

Cytoprotective properties of GLP-2

The increase in bowel mass following GLP-2 administra-
tion to normal rodents may be attributed in part to a decrease
in the number of apoptotic cells in the intestinal mucosa (36).
Nevertheless, the ability of GLP-2 to prevent cell death is
more readily evident following induction of experimental in-
testinal injury. A degradation-resistant GLP-2 analogue
(h[Gly2]GLP-2) (6,9,28) significantly diminishes the severity
of Dextran sulfate-induced colitis in mice. h[Gly2]GLP-2-
treated mice exhibit enhanced preservation of mucosal integ-
rity accompanied by an increase in intestinal mass largely as a
result of increased cellular proliferation (46). In contrast,
nonsteroidal anti-inflammatory agent-induced murine enteri-
tis is markedly attenuated via effects on both mucosal cell
proliferation and reduction of cell death. h[Gly2]GLP-2 re-
duces the number of apoptotic cells in the crypt compartment
following indomethacin administration, in association with
reduced mucosal cytokine expression, decreased myeloperoxi-
dase activity and marked diminution in bacterial translocation
(47).

The development of apoptotic mucosal cell death following
administration of chemotherapeutic agents can also be re-
duced by concomitant or prior treatment with h[Gly2]GLP-2.
Mice treated with h[Gly2]GLP-2 and either irinotecan or
5�-fluoruracil exhibit increased survival, reduced histological
evidence of disease and a highly significant reduction in posi-
tional crypt compartment apoptosis (48). The trophic and
antiapoptotic actions of GLP-2 have also been demonstrated
in rodents and pigs following withdrawal of enteral nutrition.
GLP-2 infusion prevents the development of mucosal hypopla-
sia in the small bowel of normal and tumor-bearing rats
(49,50). Similarly, GLP-2 administration to premature pigs
maintained on total parenteral nutrition reduced proteolysis
and crypt cell apoptosis in the small bowel (51).

The GLP-2 receptor

The GLP-2 receptor (GLP-2R) was cloned from rat and
human intestinal and hypothalamic cDNA libraries and is a
member of the class B glucagon-secretin–like G-protein cou-
pled receptor superfamily (52,53). The receptor exhibits high
sequence homology with related members of the superfamily
including the GLP-1, glucagon and glucose-dependent insuli-
notropic polypeptide receptors (52). Activation of GLP-2 re-
ceptor signaling results in an increase in intracellular cyclic
adenosine monophosphate (cAMP), activation of cAMP-de-
pendent protein kinase-A (PKA), an increase in cAMP-re-
sponse element (CRE) and AP-1 dependent transcription, and
an increase in expression of immediate early genes (44,52).
The GLP-2R is localized to a subset of human enteroendocrine
cells (39), murine enteric neurons (40) and specific regions of
the murine and rat central nervous system (34,35).

Signaling through the GLP-2 receptor directly inhibits cell
death in transfected heterologous cell lines treated with chem-
ical inducers of apoptosis. GLP-2 inhibits cycloheximide-in-
duced apoptosis in a cAMP-dependent, PKA-, mitogen-acti-
vated protein kinase-, and phosphatidylinositol 3-kinase
(PI3K)-independent manner in BHK cells stably transfected
with the rat GLP-2 receptor (BHK-rGLP-2R) (54). GLP-2
reduces caspase-3 and -8 activation and poly(ADP-ribose)
polymerase cleavage following incubation of BHK:rGLP-2R
cells with cycloheximide, irinotecan or LY294002, a specific
PI3-kinase inhibitor (48,54,55). GLP-2 also inhibits cyclohex-
imide and LY294002-induced mitochondrial cytochrome c
release and the caspase-dependent cleavage of �-catenin and

FIGURE 1 Structure of proglucagon depicting the proglucagon-
derived peptides. The amino acid sequences of mouse, rat and human
GLP-2. Nonconserved residues divergent from the human GLP-2 se-
quence are underlined. The site of cleavage at the position 2 alanine by
the enzyme dipeptidyl peptidase IV (DPP-IV) is shown with an arrow.
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Akt induced by inhibition of PI3K (54,55). Similarly, GLP-2
reduces activation of glycogen synthase kinase-3 (GSK-3) and
the mitochondrial association of the proapoptotic molecules
Bad and Bax in BHK-rGLP-2R cells treated with LY294002
(55). Interestingly, in contrast to the PKA-independent re-
duction of cycloheximide-induced apoptosis, GLP-2 inhibits
LY294002-induced apoptosis in a PKA-dependent manner
(55), illustrating that the cytoprotective effects of GLP-2R
signaling are mediated through multiple pathways depending
on the apoptotic stimulus.

GLP-2 and the treatment of intestinal disease

Due in part to its cytoprotective and regenerative proper-
ties, GLP-2 and dipeptidyl peptidase IV-resistant GLP-2 ana-
logues are currently being evaluated for the treatment of
human intestinal disease. Administration of GLP-2 or
h[Gly2]GLP-2 attenuates intestinal injury in diverse experi-
mental models, including acute necrotizing pancreatitis (56),
acute burn injury (57) and ischemia-reperfusion injury (58).
Similarly, GLP-2 infusion decreases the severity of inflamma-
tory bowel injury (46,47,59) or chemotherapy-induced enter-
itis (48,60).

In contrast to the evidence for beneficial effects of GLP-2
in experimental models of gut injury, very limited information
is available about the potential therapeutic actions of GLP-2
in human subjects. Eight patients with intestinal failure sec-
ondary to short bowel syndrome were treated twice daily with
subcutaneous injections of wild-type GLP-2 (for 35 d). GLP-2
treatment improved nutrient absorption, increased body
weight, delayed gastric emptying and increased bone mass
(61,62). Hence, the available data suggests that the proabsorp-
tive beneficial effects of GLP-2 noted in preclinical studies
may also be detected in short term studies in human subjects.
Whether GLP-2 will also prove to be effective in reducing
intestinal injury or enhancing gut repair in patients remains
unknown pending further clinical evaluation of GLP-2 in
humans.

Although much has been learned about GLP-2 action over
the past 7 y, the mechanisms responsible for the pleiotropic
effects of GLP-2 in the gastrointestinal tract are poorly de-
fined. The precise chemical identity and subtype of the enteric
neurons and endocrine cells that express the GLP-2 receptor
remains obscure. Similarly, it seems likely that multiple dis-
tinct second mediators transduce the diverse actions of GLP-2
in the stomach, and both small and large bowel, yet little is
known about the molecules and second messengers activated
or repressed following GLP-2R activation. Finally, the physi-
ological importance of various GLP-2 actions, ideally defined
through the use of specific GLP-2 receptor antagonists and/or
murine models with inactivating mutations in the GLP-2/
GLP-2R axis, remains to be elucidated. The emerging physi-
ological importance and therapeutic potential of GLP-2 sug-
gests that the answers to many of these questions will be
pursued vigorously by multiple investigators with complemen-
tary experimental approaches.
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