Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation

Liraglutide is a glucagon-like peptide-1 (GLP-1) analog developed for type 2 diabetes. Long-term liraglutide exposure in rodents was associated with thyroid C-cell hyperplasia and tumors. Here, we report data supporting a GLP-1 receptor-mediated mechanism for these changes in rodents. The GLP-1 receptor was localized to rodent C-cells. GLP-1 receptor agonists stimulated calcitonin release, up-regulation of calcitonin gene expression, and subsequently C-cell hyperplasia in rats and, to a lesser extent, in mice. In contrast, humans and/or cynomolgus monkeys had low GLP-1 receptor expression in thyroid C-cells, and GLP-1 receptor agonists did not activate adenylate cyclase or generate calcitonin release in primates. Moreover, 20 months of liraglutide treatment (at >60 times human exposure levels) did not lead to C-cell hyperplasia in monkeys. Mean calcitonin levels in patients exposed to liraglutide for 2 yr remained at the lower end of the normal range, and there was no difference in the proportion of patients with calcitonin levels increasing above the clinically relevant cutoff level of 20 pg/ml. Our findings delineate important species-specific differences in GLP-1 receptor expression and action in the thyroid. Nevertheless, the long-term consequences of sustained GLP-1 receptor activation in the human thyroid remain unknown and merit further investigation. (Endocrinology 151: 1473–1486, 2010)

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes glucose-dependent stimulation of insulin and suppression of glucagon secretion (1, 2), delays gastric emptying (3), and reduces energy intake (4). GLP-1 also increases β-cell mass in preclinical studies via stimulation of β-cell proliferation and neogenesis and promotion of cell survival (5, 6). The rapid degradation of native GLP-1 by dipeptidyl peptidase-4 (7) has fostered the development of degradation-resistant GLP-1 receptor agonists with prolonged half-lives. These include exenatide (a GLP-1 mimetic administered as a twice-daily injection), exenatide once weekly (a microsphere-formulated version of exenatide), and liraglutide (a once-daily human GLP-1 analog). The relative anti-hyperglycemic activity of the different GLP-1 receptor agonists is dependent on their potency and the duration of exposure (8, 9). The actions of GLP-1 are mediated by a G protein-coupled receptor, for which only one receptor subtype is known and whose sequence is highly conserved in mammals (93% identity for rat and human GLP-1 receptors) (10). The main effects of GLP-1 are mediated by GLP-1 receptors in the pancreas, intestine, stomach, and the sen-
GLP-1 Activation of Rodent Thyroid C-Cells

Bjerre Knudsen et al.

Materials and Methods

Acquisition of tissues

We fixed fresh thyroid and pancreatic tissues in 10% buffered formalin for in situ hybridization (ISH) and immunohistochemistry studies or froze the tissues in TissueTek Optimal Cutting Temperature compound for in situ ligand binding (ISLB). We obtained samples of frozen and paraffin-embedded human thyroid glands from commercial suppliers after approval from local ethical committees and with written patient consent.

Sory and central nervous systems, although receptors are present in other tissues (11, 12). In rodents, GLP-1 receptors have been detected on parafollicular thyroid C-cells. Studies with rat thyroid C-cell lines and thyroid tissues have shown that activation of the GLP-1 receptor leads to calcitonin secretion (13–15), actions blocked by the GLP-1 receptor antagonist exendin(9-39) (14). Plasma calcitonin is a specific biomarker for both C-cell activation and increased C-cell number (16), and changes in calcitonin levels are used in the diagnosis of C-cell disease in humans (17).

During the development of liraglutide, the effects of long-term drug exposure were investigated in rodents and nonhuman primates. To understand the consequences of GLP-1 receptor activation in thyroid C-cells, we assessed the secretory and proliferative actions of liraglutide and other GLP-1 receptor agonists in vitro and in vivo. We also assessed plasma calcitonin levels in diabetic patients treated with liraglutide. Our data suggest that GLP-1 receptor activation in rodents but not primates produces C-cell activation and cell proliferation. These findings may have implications for understanding the biology of sustained GLP-1 receptor activation in the treatment of metabolic disorders such as diabetes and obesity.

ISLB

ISLB on tissue sections was performed essentially as previously described (12). Before ISLB assay, we demonstrated the presence of C-cells by calcitonin staining of every 10th section through six to 10 levels of the thyroid. Total binding used 0.3 nm [125I]exendin(9-39) (PerkinElmer, Waltham, MA), and nonspecific binding was assessed with tracer plus 1 μM unlabeled GLP-1 (7-37). We quantified the silver grains in sections with image analysis over C-cell-rich areas and expressed quantities as disintegrations per minute per milligram tissue by including a section of a commercial standard containing known quantities of 125I.

Immunohistochemistry for calcitonin

Tissue sections were incubated with polyclonal rabbit antihuman calcitonin primary antibodies (catalog no. A0576; Dako Cytomation, Glostrup, Denmark) followed by biotinylated donkey antirabbit secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA; Dako Cytomation) and peroxidases (Dako Cytomation). We used diaminobenzidine (DAB) tetrahydrochloride or 3- amino-9-ethylcarbazole as substrates for visualizing the final peroxidase activity.

Immunohistochemistry for colocalization of calcitonin and GLP-1 receptor in C-cells

GLP-1 receptor polyclonal antibodies (K100B, K101B, and K102B) were generated by immunizing rabbits with an 18-amino-acid peptide (sequence TVSLETVQKWREYRRQG) from the N terminus of the human GLP-1 receptor. We used polyclonal rabbit antihuman calcitonin primary antibodies (catalog no. A0576; Dako) as a marker for C-cells. Double staining of the GLP-1 receptor and calcitonin in the C-cells used a fluorochrome-labeled calcitonin method in sections processed with GLP-1 receptor staining using an avidin-biotin complex kit. We conjugated the polyclonal antihuman calcitonin rabbit antibody using the Alexa-488 conjugation kit (catalog no. A-20181; Molecular Probes, Eugene, OR). For details, see Supplemental Methods published on The Endocrine Society’s Journals Online web site at http://endo.endojournals.org.

Cell line culturing

For details on cell line culturing, see Supplemental Methods.

Receptor binding assay

Receptor saturation whole cell binding assay is described in Supplemental Methods.

cAMP assay

cAMP accumulation was measured using the FlashPlate cAMP assay system (catalog no. SMP004A; PerkinElmer). For details, see Supplemental Methods.

Calcitonin release assay

Two days before experiments, we seeded 400,000 cells per well in Ham F12K (containing 0.92 mM Ca2+) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin in normal 24-well tissue culture plates. For the assay, cells were

Test articles

Synthetic exenatide was a freeze-dried powder, 10 mg/vial (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H-8730; Bachem, Torrance, CA). We synthesized liraglutide, (exendin-4, N-terminal amide, trifluoroacetate-salt; catalog no. H9262; Bachem, Torrance, CA).
cultured in DMEM with 15% horse serum and CaCl₂ to a final concentration of 3 mM and 200 U/ml aprotinin (catalog no. 616399; Calbiochem, San Diego, CA). For calcium sensitivity experiments, we used Ham F12K (containing 0.92 mM Ca²⁺) with 15% horse serum and 1% penicillin/streptomycin, CaCl₂ to the desired final concentration, and 200 U/ml aprotinin. For calcium stimulation, we added a solution of CaCl₂ to give the final concentrations of Ca²⁺. For details, see Supplemental Methods (calcitonin secretion in vitro and calcitonin assays).

Western blotting

We carried out Western blotting with denatured lysates after SDS-PAGE on precast 4–12% gradient gels. Proteins were electrotransferred to 0.45-μm polyvinylidene difluoride membranes. The antibody used for GLP-1 receptor detection is described in *Immunohistochemistry* and in Supplemental Methods, along with full details of the Western blotting.

Quantitative PCR

Cells were lysed with a guanidine hydrochloride buffer. Total RNA was extracted by acid phenol/1-bromo-3-chloropropene buffer followed by binding to silica particles. The level of GLP-1 mRNA was measured by real-time RT-PCR and evaluated relative to β-actin. Details of the method are described in Supplemental Methods.

Animal studies

Unless otherwise stated, we conducted animal studies with CD-1 mice (Crl:CD1; Charles River, Wilmington, MA) aged approximately 5–10 wk, Sprague Dawley rats (Charles River) aged approximately 6–7 wk, cynomolgus monkeys (*Macaca fascicularis*) aged approximately 1–2 yr, or GLP-1 receptor knock-in mice lacking a functional GLP-1 receptor, aged 6–9 wk (Taconic M&B, Hudson, NY). Individual study designs are outlined in Supplemental Table 1, and details are given in Supplemental Methods. We conducted animal experiments following approved national regulations in Denmark and the United Kingdom and with animal experimental licenses granted by the Danish Ministry of Justice and the United Kingdom Home Office. We housed and handled animals according to current regulations, used environmental enrichment in all studies, and obtained local animal ethics committee approvals before study start.

Dosing

Unless otherwise stated, we injected animals sc and rotated between dorsal injection sites. For details, see Supplemental Methods.

Bioanalysis

We drew blood at prespecified time points from the ocular orbita (mice and rats), jugular vein (rats), or large limb veins (cynomolgus monkeys). We performed bioanalysis of plasma drug concentrations to evaluate drug exposure by validated RIA or ELISA. Val-Pyr/aprotinin was added to tubes to prevent enzymatic degradation.

Calcitonin analysis of plasma samples

We analyzed EDTA-stabilized plasma samples for calcitonin. For details, see Supplemental Methods.

Histopathological analysis

C-cell hyperplasia and tumor formation in response to GLP-1 receptor agonists was assessed in mice, rats, and cynomolgus monkeys (Supplemental Table 1). We prepared thyroid tissue sections according to standard histological procedures; diagnostic criteria from internationally recognized guidelines for preclinical histopathology were followed (19–22). In some studies, we used immunohistochemical staining for calcitonin to enhance the identification of C-cells (Supplemental Table 1). For determination of C-cell density (C-cells/mm²) in the thyroid, C-cells stained by immunohistochemistry were counted by unbiased quantitative measurements carried out using the CAST grid system and the fish eye (Olympus, Ballerup, Denmark). In the 104-wk rodent studies and the 4- and 13-wk monkey studies, we sampled one tissue section at the level of the parathyroid glands stained with hematoxylin and eosin. In the remaining studies, we sampled multiple thyroid sections. We applied a semiquantitative scoring system in the 16-month rat study. Here we scored focal C-cell hyperplasia on a scale from 0–2: 0, normal (0); minimal (1), or one to two focal accumulations of C-cells the size of an average follicle; and slight (2), more than two focal accumulations of C-cells with one focus larger than an average follicle. We applied a quantitative scoring system in the 52-wk monkey study. Here, double immunohistochemical staining for proliferating cell nuclear antigen (PCNA) and calcitonin was applied for the identification of proliferating C-cells. We estimated C-cell proliferation as the ratio between proliferating C-cells and the total number of C-cells. We also estimated the relative C-cell mass as the ratio between C-cells and follicular cells. To determine C-cell density, we counted C-cells/mm² in representative sections stained immunohistochemically for calcitonin.

Calcitonin mRNA analysis

Calcitonin mRNA levels were quantified in the thyroids of mice and rats after various treatments (Supplemental Table 1). We converted the RNA to cDNA and then used quantitative (TaqMan) PCR. Calcitonin mRNA levels were expressed relative to β-actin and GAPDH.

Calcitonin release in humans

Nine clinical trials of 20–104 wk duration were included in the calcitonin evaluation. Eight phase-3 trials in type 2 diabetic subjects [Liraglutide Effect and Action in Diabetes (LEAD) 1–6 plus two phase-3 trials in Japanese subjects] and one phase-2 trial in obese subjects. All trials were conducted in accordance with the Declaration of Helsinki; appropriate ethics committee approvals and informed patient consents were obtained before the start of each study. Calcitonin was evaluated by analyzing fasting calcitonin and calcitonin measured in a calcium stimulation test performed on a subset of subjects. For further details, see Supplemental Methods.

Statistical analyses

In vivo animal studies

We compared the calcitonin release values of different groups by estimating the ratio of their geometric means and 95% confidence interval (CI). We compared calcitonin protein synthesis data by estimating the ratio of their mean values and 95% CI and performing a Student’s t test. We compared the incidences of C-cell hyperplasia with controls using a Fisher’s exact test and...

Endocrinology, April 2010, 151(4):1473–1486

Methods (calcitonin secretion and calcitonin analysis of plasma samples)

- **Bioanalysis**: We conducted animal experiments following animal ethics committee approvals before study start.
- **Dosing**: Unless otherwise stated, we conducted animal studies with CD-1 mice (Crl:CD1; Charles River, Wilmington, MA) aged approximately 5–10 wk.
- **Bioanalysis**: We drew blood at prespecified time points from the ocular orbita (mice and rats), jugular vein (rats), or large limb veins (cynomolgus monkeys). We performed bioanalysis of plasma drug concentrations to evaluate drug exposure by validated RIA or ELISA. Val-Pyr/aprotinin was added to tubes to prevent enzymatic degradation.
- **Calcitonin analysis of plasma samples**: We analyzed EDTA-stabilized plasma samples for calcitonin. For details, see Supplemental Methods.

Western blotting

- *Immunohistochemistry* and in Supplemental Methods, along with full details of the Western blotting.

Quantitative PCR

- Cells were lysed with a guanidine hydrochloride buffer. Total RNA was extracted by acid phenol/1-bromo-3-chloropropene buffer followed by binding to silica particles.

Animal studies

- Unless otherwise stated, we conducted animal studies with CD-1 mice, Sprague Dawley rats, cynomolgus monkeys, and GLP-1 receptor knock-in mice.

Dosing

- Unless otherwise stated, we injected animals sc and rotated between dorsal injection sites.

Bioanalysis

- We drew blood at prespecified time points from the ocular orbita (mice and rats), jugular vein (rats), or large limb veins (cynomolgus monkeys).

Calcitonin analysis of plasma samples

- We analyzed EDTA-stabilized plasma samples for calcitonin. For details, see Supplemental Methods.

Histopathological analysis

- C-cell hyperplasia and tumor formation in response to GLP-1 receptor agonists was assessed in mice, rats, and cynomolgus monkeys (Supplemental Table 1).

Calcitonin mRNA analysis

- Calcitonin mRNA levels were quantified in the thyroids of mice and rats after various treatments (Supplemental Table 1).

Calcitonin release in humans

- Nine clinical trials of 20–104 wk duration were included in the calcitonin evaluation.

Statistical analyses

In vivo animal studies

- We compared the calcitonin release values of different groups by estimating the ratio of their geometric means and 95% confidence interval (CI).

Downloaded from endo.endojournals.org by Daniel Drucker on March 26, 2010
neoplastic changes, taking account of differences in mortality, assessed using Peto’s model (23). The correlation between the early calcitonin response and the later development of focal C-cell hyperplasia in individual animals was analyzed by regression analysis. We analyzed the data from the 9-wk mouse study with a Wilcoxon rank sum test to compare the severity of C-cell hyperplasia, and ANOVA was used for data from other in vivo animal studies.

Clinical studies
Fasting calcitonin was analyzed by evaluating proportion of subjects increasing to 20 ng/liter or more (all trials). A repeated-measurement analysis for normal censored data with trial, treatment, and sex as fixed effects and patient as random effect was performed in the two 2-yr studies (LEAD 2 and 3). Endpoints from the calcium stimulation test were analyzed with an analysis of covariance with treatment and sex as fixed effects and baseline value as covariate. For further details, see Supplemental Methods.

Results
Thyroid C-cell number and GLP-1 receptor expression is species dependent
GLP-1 receptor expression on thyroid C-cells was identified by immunohistochemistry. Staining revealed the presence of calcitonin-immunopositive C-cells in thyroid tissue from mice (Fig. 1A), rats, cynomolgus monkeys, and humans (Supplemental Fig. 1, A–C); the GLP-1 receptor was localized exclusively to C-cells, as evidenced by co-localization of calcitonin and GLP-1 receptor immunopositivity. No other thyroid cell types exhibited GLP-1 receptor immunopositivity in any species, and controls demonstrated the specificity of the assays (Fig. 1, A and B).

C-cell densities were determined for mice, rats, and monkeys by computer-assisted cell counting in sections stained immunohistochemically for calcitonin. The mean \(\pm SD \) C-cell densities in mouse and rat thyroid glands were 216 \(\pm 62 \) and 449 \(\pm 222 \) cells/mm\(^2\) (n = 27–30, males and females combined), that is, 22- and 45-fold higher, respectively,
than that reported for humans \((10 \pm 26; n = 79)\) \((24–26)\). The C-cell densities in thyroid glands from cynomolgus monkeys \((23 \pm 10; n = 6–8)\) and humans were comparable.

ISH using tissue from two human donors detected calcitonin mRNA in C-cells and cyclophillin mRNA in all thyroid cells (Fig. 1C). In contrast, GLP-1 receptor mRNA transcripts were not detected in human thyroid tissue. ISLB studies revealed GLP-1 receptor binding on rat C-cells \((\text{mean} \pm \text{SD} = 1699 \pm 395 \text{ disintegrations/min} \cdot \text{mg tissue}; n = 8; \text{Fig. 1D})\). In contrast, no signal was apparent in experiments using sections from thyroid tissues from 13 different human donors (representative experiment, Fig. 1E; Supplemental Fig. 1, D and E). Importantly, both rat and human pancreata had a good signal in agreement with β-cell GLP-1 receptor expression (Fig. 1, D and E).

Rat C-cell lines, but not human TT cells, express functional GLP-1 receptors

The acute functional effects of GLP-1 receptor agonists were explored in the rat C-cell lines rat MTC 6-23 and CA-77, which are known to express the GLP-1 receptor \((13, 15)\), and a human C-cell line, TT cells \((27)\).

GLP-1 receptor expression was quantified using three separate techniques: RT-PCR, Western blotting, and saturation ligand binding (Fig. 2, A–E). Levels of GLP-1 receptor mRNA transcripts were 14- to 21-fold lower in the human TT C-cell line compared with the rat C-cell lines (Fig. 2A). Western blot analysis revealed immunoreactive proteins corresponding to the predicted molecular weight of the GLP-1 receptor in the rat cell lines, whereas the human GLP-1 receptor was not detected in the TT cells (Fig. 2, B and C). The antibody was previously shown to recognize the human GLP-1 receptor (in immunohistochemistry, as shown in Supplemental Fig. 1C). Saturation binding experiments resulted in saturation binding curves with the expected affinity for GLP-1; a representative saturation plot from CA-77 is shown (Fig. 2D). The number of receptors expressed on the human cell line was determined by saturation binding analysis to be approximately 105 receptors per cell for the human cell line, whereas the number of receptors was 15- to 124-fold higher for the rat thyroid MTC 6-23 and CA-77 cells and the rat β-cell INS-1E cell lines (Fig. 2E).

We next assessed whether GLP-1 receptor expression in MTC cells was coupled to signal transduction and calcitonin secretion. Native GLP-1, liraglutide, and exenatide all potently elicited cAMP responses in the rat MTC 6-23 cell line. The relative potencies were higher for GLP-1 and exenatide than liraglutide \((\text{mean} \pm \text{SD values for EC}_{50} = 120 \pm 70, 90 \pm 40, \text{and} \ 5800 \pm 2800 \text{ pm} \text{ for GLP-1, exenatide, and liraglutide, respectively; } n = 3 \text{ in all cases; Fig. 2F})\). These actions were GLP-1 receptor dependent because the GLP-1 receptor antagonist exendin(9-39) right-shifted the GLP-1-induced cAMP dose-response curve (Supplemental Fig. 2, A and B). In contrast, the forskolin-stimulated cAMP response was not antagonized by exendin(9-39) (Supplemental Fig. 2B). Moreover, forskolin, but not exenatide, GLP-1, or liraglutide, elicited an increase in cAMP levels in human TT cells (Fig. 2G).

Consistent with data from the cAMP experiments, all three GLP-1 receptor agonists elicited calcitonin responses in the rat MTC 6-23 cell line, with varying potencies \((\text{mean} \pm \text{SD values for EC}_{50} = 80 \pm 60, 55 \pm 26, \text{and} \ 5300 \pm 2400 \text{ pm} \text{ for, GLP-1, exenatide, and liraglutide; } n = 3 \text{ in all cases; Fig. 2H})\). Moreover, the stimulation of calcitonin secretion occurred via the GLP-1 receptor, because the GLP-1 receptor antagonist exendin(9-39) antagonized the effects of GLP-1, exenatide, and liraglutide (Supplemental Fig. 2C). In contrast, GLP-1 receptor agonists did not stimulate calcitonin release in human TT C-cells (Fig. 2I). To assess responses across the class of GLP-1 receptor agonists, experiments using taspoglutide and lixisenatide, structurally distinct GLP-1 receptor agonists, were performed. These compounds also potently elicited calcitonin release in a dose-dependent manner in rat MTC 6-23 cells (Supplemental Fig. 2D). Additional control experiments showed the rat and human C-cell lines responded to calcium with increasing calcitonin release, and GLP-1 potentiated the effect of calcium on calcitonin release in the rat C-cell line (Supplemental Fig. 2, E–G).

In rodents, GLP-1 receptor agonists stimulate calcitonin release in a GLP-1 receptor-dependent manner, followed by increased calcitonin gene expression

The designs of the *in vivo* studies are summarized in Supplemental Table 1.

Mice

Single liraglutide injections of 0.2–3.0 mg/kg induced an acute dose-dependent increase in plasma calcitonin that reached a plateau above 1.0 mg/kg · d [ratios of liraglutide to control (95% CI) were for 0.03 mg/kg · d, 1.09 (0.66–1.79), \(P = 0.73\); for 0.2 mg/kg · d, 1.83 (1.11–3.01), \(P = 0.02\); for 1.0 mg/kg · d, 2.36 (1.43–3.88), \(P < 0.001\); and for 3.0 mg/kg · d, 2.43 (1.47–4.00), \(P < 0.001\), ANOVA; Fig. 3A]. The increase in plasma calcitonin was dose proportionate; at the two highest doses, calcitonin levels remained elevated for more than 24 h (Fig. 3A). Calcitonin levels also rapidly increased immediately after administration of 0.25 mg/kg · d exenatide [ratio of 0.25 mg/kg · d exenatide to control by continuous infusion (95%
FIG. 2. The TT human thyroid C-cell line expresses few GLP-1 receptors compared with rat C-cell lines MTC 6-23 and CA-77 and shows a lack of functional response to GLP-1 and GLP-1 receptor agonists. A–E, Results of experiments assessing GLP-1 receptor and/or mRNA expression in C-cell lines; A, RT-PCR (n = 3); B and C, Western blotting analysis of GLP-1 receptor expression levels in rat and human cells (n = 3 for C). In B, lysate of rat thyroid was included as a positive control: top, GLP-1 receptor analysis (molecular mass 51 kDa); middle, adsorption control; bottom, GAPDH control. D and E, Saturation binding results (the GLP-1 receptor saturation curve shown in D is for the rat C-cell line CA-77; n = 2–3 for E). F–I, Functional responses of rat MTC 6-23 (F and H) and the TT human thyroid C-cell lines (G and I) to GLP-1 receptor agonists and forskolin in terms of cAMP accumulation and calcitonin release (n ≥ 3; data shown are from one representative experiment). **, P < 0.01 vs. human cell line (A, C, and E, t test). INS-1E is a rat pancreatic β-cell line (control).
FIG. 3. Plasma calcitonin and calcitonin mRNA levels in CD-1 mice increased after dosing with GLP-1 receptor agonists. A and B, Plasma calcitonin was increased after a single liraglutide dose (A) and exenatide sc infusion (B). When the same total daily exenatide dose was given as a single sc injection, an increase was also seen during the first 12 h; after this, the response was similar to vehicle. C, Consistent with this, once-daily exenatide was relatively rapidly eliminated, whereas the liraglutide and exenatide infusion profiles were more comparable. Data are from two separate studies (liraglutide or exenatide). n = 5–6 per group per time point for A–C. D and E, Plasma calcitonin was still increased after 9 wk daily liraglutide dosing (D) and 12 wk exenatide dosing (E), again with a more pronounced increase with exenatide infusion than exenatide sc. F, Calcitonin increases progressed with time and dose with 104 wk repeat dosing of liraglutide. n = 8–36 per group per time point for D–F. G, Calcitonin levels in GLP-1 receptor −/− mice were not affected by dosing with liraglutide or exenatide (n = 8 per group, sampled 6 h after dosing). Increased calcitonin levels were apparent in the positive control group (calcium; n = 4). Data for liraglutide are from a separate experiment with the same outcome for control groups. Calcitonin mRNA increased dose-dependently with liraglutide (H) (n = 18–29 per group) and exenatide (I) (n = 6–11 per group) for 2 wk. *, P < 0.05; **, P < 0.01; ***, P ≤ 0.001 for ratios of one treatment to another/vehicle unless indicated otherwise. Calcitonin mRNA levels are relative to β-actin/GAPDH and normalized against vehicle.
CI) was 7.96 (6.00–10.55); P < 0.0001, ANOVA; Fig. 3B]. Consistent with the shorter half-life of exenatide (vs. liraglutide) in mice (Fig. 3C), plasma calcitonin remained elevated after continuous infusion but fell rapidly after a single injection of exenatide (Fig. 3B).

Calcitonin levels remained elevated in mice treated with GLP-1 receptor agonists (9 wk liraglutide, 12 wk continuous exenatide, and 104 wk liraglutide dosing; Fig. 3, D–F). To determine the mechanism mediating the increase in calcitonin after administration of GLP-1 receptor agonists, we examined calcitonin levels in GLP-1 receptor −/− mice. Although plasma calcitonin levels were increased after administration of calcium, liraglutide and exenatide failed to increase plasma calcitonin levels in GLP-1 receptor −/− mice (Fig. 3G). In mice with functional GLP-1 receptors, both liraglutide (Fig. 3H) and exenatide (Fig. 3I) increased calcitonin mRNA levels in a dose-dependent manner.

Rats

Liraglutide increased levels of plasma calcitonin in rats (Fig. 4, A–C). After 4 wk liraglutide administration, calcitonin levels increased in a dose-dependent manner [ratio of liraglutide 0.75 mg/kg to control (95% CI) was 1.89 (1.49–2.41), P < 0.001; Fig. 4B]. During a 16-month study, calcitonin levels increased markedly in all dose groups (Fig. 4C). However, by 7 months, calcitonin levels were similarly elevated in control rats, consistent with published data (28). The calcitonin increase seen during the first 4 wk of treatment correlated, on an individual animal basis, with later development of focal C-cell hyperplasia (P = 0.0012). Mean calcitonin mRNA levels were 1.4-fold higher with liraglutide, 0.75 mg/kg · d, compared with vehicle after 4 wk dosing (P > 0.05; n = 14 per group, data not shown).

Long-term dosing with GLP-1 receptor agonists causes C-cell hyperplasia and tumor formation in rodents

Hyperplasia (Table 1)

Liraglutide administration was accompanied by C-cell hyperplasia after 9 wk dosing in mice (seven of 32 animals had hyperplasia with 5 mg/kg · d). Hyperplasia was reversed after cessation of treatment, as evident in the 15-wk recovery period. With exenatide, C-cell hyperplasia was similarly induced after 12 wk continuous infusion (11 of 36 animals had hyperplasia with 0.25 mg/kg · d). This effect was related to continuous drug exposure because the same total dose administered by single daily injection did not cause an increase in the incidence of hyperplasia. C-cell hyperplasia was generally more common in rats, because vehicle-dosed rats also exhibited spontaneous hyperplasia, whereas this was not seen in mice. In the 104-wk liraglutide studies, a dose-dependent increase in hyperplasia was seen in both rats and mice, with incidences reaching up to 54 and 38%, respectively.

Tumor formation (Table 2)

In 104-wk rodent studies, C-cell tumors increased after liraglutide administration in a dose-dependent manner. Rats treated with liraglutide had significantly more adenomas and carcinomas than control rats, whereas liraglutide-treated mice showed only significantly more adenomas than control mice. The only C-cell carcinomas in mice occurred in two females receiving a daily dose of liraglutide corresponding to an exposure that was 36-fold greater than the human dose.

Liraglutide does not cause calcitonin release or C-cell proliferation in nonhuman primates

In contrast to results in rodents, liraglutide had no effect on plasma calcitonin levels in cynomolgus monkeys after single doses or during 87 wk dosing (Fig. 5, A and B). A calcium challenge markedly increased calcitonin, but cal-
Liraglutide does not cause calcitonin release in humans

Figure 6A shows estimated geometric means from the repeated-measurement analysis for the two studies with 2-yr data (1832 subjects were included in the analysis and 609 liraglutide-treated subjects completed the 2-yr trials). Estimated geometric mean levels remained around 1 pg/ml or lower at all time points in all treatment groups (estimated median baseline value, 0.59 pg/ml), well within the normal ranges for calcitonin (men, ≤8.4 pg/ml; women, ≤5.0 pg/ml; Fig. 6A). Furthermore, when combining data from nine clinical studies with durations of 20 wk or longer, there was no difference over time or between treatment groups in the proportion of patients whose calcitonin levels increased above a clinically relevant cutoff value of 20 pg/ml (Table 3). No women exhibited increases to calcitonin levels above 20 ng/liter. A subset of patients from two of the six phase-3 studies underwent a calcium stimulation test at baseline and wk 26 or 52 to assess functional C-cell activity. There were no significant differences for peak calcitonin levels or the ratio of peak to basal calcitonin levels between liraglutide (1.2 and 1.8 mg) and comparator treatments (Fig. 6, B and C).

Discussion

The present study shows that GLP-1 receptor agonists activate rodent thyroid C-cells, causing calcitonin release in a GLP-1 receptor-dependent manner. Furthermore, long-term GLP-1 receptor activation is associated with increased levels of calcitonin mRNA, C-cell proliferation, and tumor formation in rats and mice.

Liraglutide and four other GLP-1 receptor agonists (native GLP-1, exenatide, taspo-glutide, and lixisenatide) all potently activated the GLP-1 receptor in rat thyroid C-cell...
GLP-1 Activation of Rodent Thyroid C-Cells

Endocrinology, April 2010, 151(4):1473–1486

TABLE 2. Incidence of tumor formation in mice and rats treated with GLP-1 receptor agonists

<table>
<thead>
<tr>
<th>GLP-1 receptor agonist</th>
<th>Vehicle control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
</tr>
<tr>
<td>Mice</td>
<td></td>
</tr>
<tr>
<td>Liraglutide dose (mg/kg · d)</td>
<td>0.03</td>
</tr>
<tr>
<td>Number of animals (n)</td>
<td>66</td>
</tr>
<tr>
<td>C-cell carcinoma (%)</td>
<td>0</td>
</tr>
<tr>
<td>C-cell adenoma (%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rats</td>
<td></td>
</tr>
<tr>
<td>Liraglutide dose (mg/kg · d)</td>
<td>0.075</td>
</tr>
<tr>
<td>Number of animals (n)</td>
<td>49</td>
</tr>
<tr>
<td>C-cell carcinoma (%)</td>
<td>8</td>
</tr>
<tr>
<td>C-cell adenoma (%)</td>
<td>16</td>
</tr>
</tbody>
</table>

Long-term dosing with GLP-1 receptor agonists causes tumor formation in rodents. Statistical tests used Peto’s model for the incidence of neoplastic lesions.

- \(a P < 0.05\)
- \(b P < 0.01\)
- \(c P < 0.001\) vs. vehicle control for each sex.

lines with the same maximal efficacy. Importantly, this activation was specific to the GLP-1 receptor because it was blocked by the GLP-1 receptor antagonist exendin(9–39). Consistent with a GLP-1 receptor-dependent mechanism, we did not observe calcitonin release with liraglutide or exenatide in GLP-1 receptor knockout mice.

We explored the possible relevance of the rodent findings by investigating human thyroid tissue, a human C-cell line, and a nonhuman primate model and by analysis of calcitonin data from clinical trials in patients with type 2 diabetes. Immunohistochemical staining detected GLP-1 receptors localized to C-cells in all species tested. Although GLP-1 mRNA transcripts colocalized with C-cells in the rodent thyroid gland (data not shown), no GLP-1 receptor signal was detected in the human thyroid gland by ISH. Furthermore, with ISLB studies, GLP-1 receptor binding in the rat thyroid was competed out with unlabeled ligand and was consistent with the presence of receptors on C-cells; GLP-1 receptor binding was not detected in human thyroid tissues.

We next investigated the functional effect of GLP-1 receptor agonists on C-cells using rat and human thyroid C-cell lines. The TT C-cell line has been used extensively as a model for studies of human C-cell biology (29–33). The studies using cell lines provided no evidence of a direct growth-promoting effect of GLP-1 receptor activation (Supplemental Information, Part 1), although proliferative effects were apparent in a pancreatic β-cell line. Although GLP-1 receptor agonists might theoretically stimulate β-cell proliferation as a mechanism for β-cell tumors (34, 35), we found no induction of β-cell tumors in pancreata of mice, rats, or monkeys in our studies (data not shown).

We used three different techniques to quantify GLP-1 receptor expression in rat and human C-cell lines and demonstrated that the number of receptors expressed in the human TT line was very low, and the corresponding signal for GLP-1 receptor mRNA was equally small. Importantly, whereas forskolin, the adenylate cyclase pathway activator, increased both cAMP and calcitonin levels in the human C-cell line, GLP-1 receptor agonists did not affect cAMP or levels of calcitonin in human TT cells.

Studies in mice and rats showed an increase in plasma calcitonin levels with GLP-1 receptor agonists. The calcitonin response was associated with increased calcitonin mRNA levels and, sequentially, by C-cell hyperplasia and tumor formation. In 2-yr studies involving wild-type mice, we observed dose-dependent C-cell hyperplasia and neoplasia, occurring only at doses that also caused increased calcitonin levels. In rats, we also reported a treatment-related elevation of calcitonin levels during the first month of dosing, which correlated with the later development of C-cell proliferation on an individual animal basis.

The C-cell stimulatory effects in rodents were more pronounced with continuous exposure to GLP-1 receptor agonists. These observations may have relevance for interpretation of comparable experiments carried out using second-generation GLP-1 receptor agonists designed to have enhanced potency and a more prolonged duration of action. We note that in previous 2-yr rodent carcinogenicity studies where tumors were seen in rats but not in mice, exenatide was administered at high doses but only once daily (36, 37). With the plasma half-life of exenatide in rats and mice, sustainable 24-h coverage in the rodents was likely not achieved. In contrast, we found a clear association between C-cell stimulatory effects in rodents and continuous exposure to GLP-1 receptor agonists. A single dose of exenatide did not stimulate prolonged calcitonin secretion, whereas the same total daily dose of exenatide administered continuously to mice elicited a magnitude and duration of calcitonin release that was the same as that for liraglutide. When dosed continuously, exenatide also...
resulted in a similar frequency of C-cell hyperplasia in mice as liraglutide.

We also investigated whether liraglutide had any cross-reactivity to 75 different receptors or ion channels and found this not to be the case (Supplemental Information, Part 2). We also ruled out indirect augmentation of the calcium-induced stimulation of C-cells by liraglutide (Supplemental Information, Part 3).

Because nonhuman primates are genetically and physiologically more similar to humans than are rodents, we assessed liraglutide action in monkeys. In both mice and rats, C-cells are relatively abundant, and calcitonin is an important regulatory hormone in calcium homeostasis (38). C-cells are few in number in primates, however. Moreover, in humans, the physiological significance of calcitonin after birth is uncertain; calcitonin seems to have a major role in calcium homeostasis only in circumstances such as pregnancy or lactation (39). Although there are limited data available on C-cells in nonhuman primates, their calcitonin secretion in response to calcium is similar to that in humans (40). Interestingly, as little as 1 month treatment with vitamin D is associated with increased C-cell numbers in nonhuman primates (41), indicating that this species is an appropriate model for assessing proliferative effects on C-cells. In contrast, we did not detect increased calcitonin secretion or a proliferative response after liraglutide dosing for up to 87 wk in cynomolgus monkeys. Liraglutide doses provided exposures up to 60-fold greater than the highest dose recommended for the treatment of type 2 diabetes.

The relevance of the rodent findings was explored in humans via calcitonin monitoring in clinical studies. As shown in Fig. 6A, up to 2 yr exposure to liraglutide has not led to increased calcitonin levels. Geometric mean calcitonin levels remained within the lower end of the normal range and the patterns over time did not differ between liraglutide and active comparators. Importantly, there were no treatment-related differences in the number of patients moving above a clinically relevant cutoff of 20 pg/ml. Additionally, in the LEAD 6 study, which compared the efficacy and safety of once-daily liraglutide and twice-daily exenatide over 26 wk,
increased above the clinically relevant cutoff value of 20 pg/ml. Data at wk 52 are from LEAD trials 2 and 3, Japanese trials 1700 and 1701, and the obesity trial. Data at wk 104 are from LEAD trials 2, 3, and 1701, and the obesity trial. Data at wk 104 are from LEAD trials 2 and 3, Japanese trials 1700 and 1701) and one liraglutide obesity clinical trial. Clinical data are from the safety populations of LEAD 3 and 4 main trials. Clinical data are from the safety populations of LEAD trials 1–6 and Japanese trials 1700 and 1701. The absence of increases in calcitonin from human C-cells after liraglutide treatment implies that humans differ from rodents with respect to the GLP-1 receptor-mediated mechanism that can cause C-cell secretion and hyperplasia. Data from large population studies have validated the use of calcitonin as a specific and sensitive screening tool for evaluating C-cell status. Furthermore, in C-cell hyper- or neoplasia, both basal and stimulated plasma calcitonin levels increase (43). The normal calcitonin levels in patients treated with liraglutide are in contrast with increased calcitonin levels after treatment with the proton pump inhibitor omeprazole (44). Omeprazole and other proton pump inhibitors reduce gastric acid secretion and increase plasma levels of gastrin (45), which, in turn, lead to calcitonin secretion from the C-cells. Nevertheless, the long-term use of omeprazole is not associated with C-cell-related side effects in humans.

The significant species differences in C-cell responsiveness to GLP-1 receptor agonists in the present paper are consistent with not only species differences in the physiological roles of calcitonin but also with published data about the frequency and causes of C-cell proliferation in rats and humans. In rats, calcitonin is released to protect against postprandial hypercalcemia and, a link between the gastrointestinal axis and calcitonin secretion has been described as a mechanism that counteracts feeding-induced hypercalcemia (46). In line with this role in acute calcium regulation, the physiological half-life of calcitonin is very short (approximately 4 min) (47). The high frequency of C-cell proliferative lesions in rats observed in the studies reported here are consistent with previous observations demonstrating spontaneous incidences of C-cell hyperplasia in up to 75% of animals in 2-yr studies (48). Furthermore, increases in C-cell tumors have been reported with other pharmaceutical agents, such as the PTH analog teriparatide (49) and the calcium-regulating hormone vitamin D3 (50). We observed a greater incidence of C-cell hyperplasia after GLP-1 receptor activation in female mice. Gender-specific differences in C-cell biology have been previously described in several species, including humans (51). Moreover, C-cell hyperplasia and the spontaneous development of C-cell tumors are much more common in female than male rats (48). The precise mechanisms accounting for the enhanced spontaneous proliferation of rodent C-cells have not been elucidated.

In conclusion, we describe marked quantitative and qualitative species differences in GLP-1 receptor expression and function in the thyroid glands of rodents compared with primates. Our data demonstrate that exposure to a GLP-1 receptor agonist in rodents leads to calcitonin secretion, up-regulation of calcitonin mRNA, C-cell proliferation, and tumor formation. In contrast, we found no calcitonin release and no evidence of C-cell hyperplasia in monkeys after 20 months dosing of liraglutide at more than 60-fold the clinical exposure. Furthermore, calcitonin levels were not increased after 2 yr clinical exposure to liraglutide. Taken together, the data indicate that thyroid

TABLE 3. Proportion of patients whose calcitonin levels increased above the clinically relevant cutoff value of 20 pg/ml

<table>
<thead>
<tr>
<th></th>
<th>Proportion of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide</td>
<td></td>
</tr>
<tr>
<td>20–28 wk</td>
<td>0.3 (n = 3551)</td>
</tr>
<tr>
<td>52 wk</td>
<td>0.2 (n = 1741)</td>
</tr>
<tr>
<td>104 wk</td>
<td>0.1 (n = 839)</td>
</tr>
<tr>
<td>Active comparator</td>
<td>0.2 (n = 1412)</td>
</tr>
<tr>
<td></td>
<td>0.3 (n = 630)</td>
</tr>
<tr>
<td></td>
<td>0.3 (n = 320)</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.1 (n = 710)</td>
</tr>
<tr>
<td></td>
<td>0.0 (n = 216)</td>
</tr>
<tr>
<td></td>
<td>0.0 (n = 61)</td>
</tr>
</tbody>
</table>

The proportion of patients whose calcitonin levels increased above the clinically relevant cutoff value of 20 pg/ml was low and similar among treatment groups. All patients above 20 pg/ml were male. Data at wk 20–28 are from eight phase-3 diabetes clinical trials (LEAD trials 1–6 and Japanese trials 1700 and 1701) and one liraglutide obesity clinical trial. Data at wk 52 are from LEAD trials 2 and 3, Japanese trials 1700 and 1701, and the obesity trial. Data at wk 104 are from LEAD trials 2 and 3.

FIG. 6. Plasma calcitonin levels were not increased in patients with type 2 diabetes receiving liraglutide in phase-3 clinical trials. A, No increase in basal calcitonin levels was seen in the two longer-term phase-3 LEAD trials (LEAD trials 2 and 3 with respective extensions). Liraglutide did not significantly increase peak (B) or peak to basal (C) plasma calcitonin levels. Neither compound was associated with increased calcitonin levels (9).

The precision mechanism that can cause C-cell secretion and hyperplasia is very short (approximately 4 min) (47). The high frequency of C-cell proliferative lesions in rats observed in the studies reported here are consistent with previous observations demonstrating spontaneous incidences of C-cell hyperplasia in up to 75% of animals in 2-yr studies (48). Furthermore, increases in C-cell tumors have been reported with other pharmaceutical agents, such as the PTH analog teriparatide (49) and the calcium-regulating hormone vitamin D3 (50). We observed a greater incidence of C-cell hyperplasia after GLP-1 receptor activation in female mice. Gender-specific differences in C-cell biology have been previously described in several species, including humans (51). Moreover, C-cell hyperplasia and the spontaneous development of C-cell tumors are much more common in female than male rats (48). The precise mechanisms accounting for the enhanced spontaneous proliferation of rodent C-cells have not been elucidated.

In conclusion, we describe marked quantitative and qualitative species differences in GLP-1 receptor expression and function in the thyroid glands of rodents compared with primates. Our data demonstrate that exposure to a GLP-1 receptor agonist in rodents leads to calcitonin secretion, up-regulation of calcitonin mRNA, C-cell proliferation, and tumor formation. In contrast, we found no calcitonin release and no evidence of C-cell hyperplasia in monkeys after 20 months dosing of liraglutide at more than 60-fold the clinical exposure. Furthermore, calcitonin levels were not increased after 2 yr clinical exposure to liraglutide. Taken together, the data indicate that thyroid
C-cells in rats and mice differ markedly from primate cells in their response to GLP-1 receptor activation.

Acknowledgments

We accept direct responsibility for this paper but are grateful for the contributions made by contract research organizations (Huntingdon Life Sciences, Charles River Laboratories, Pipeline, BioLab, and Skelettech) in the collection of data, Hanne Vikjær Andersen and Karin Hamborg Albrechtsen (Novo Nordisk A/S) for assistance with experiments, and Watermeadow Medical (supported by Novo Nordisk A/S) for assistance with the manuscript.

Address all correspondence and requests for reprints to: Lotte Bjerre Knudsen, Department of Biology and Pharmacology Mgt, Novo Nordisk A/S, Novo Nordisk Park, Maaloev DK-2760, Denmark. E-mail: lbkn@novonordisk.com.

L.B.K. and L.W.M. were involved in the generation, analysis, and review of data and wrote the paper; S.D.J. was involved in the analysis and review of data; S.A., K.A., A.S.d.B., C.G., F.E., A.C.H., H.J., A.M.M., H.S.N., J.N., and H.S. were involved in the generation of data; A.C.M., T.D.L.T., and M.Z. were involved in the clinical experiments; D.J.D. was involved in discussion of the data and in writing the article and provided the knockout mice.

Disclosure Summary: D.J.D. has served as an advisor or consultant within the past 12 months to Amylin Pharmaceuticals, Arena Pharmaceuticals Inc., Arisaph Pharmaceuticals Inc., Eli Lilly Inc., Glaxo Smith Kline, Glenmark Pharmaceuticals, Hoffmann-La Roche Inc., Isis Pharmaceuticals Inc., Merck Research Laboratories, Metabolex Inc., Novartis Pharmaceuticals, Novo Nordisk Inc., Phenomix Inc., and Transition Pharmaceuticals Inc. Neither D.J.D. nor his family members hold stock directly or indirectly in any of these companies. D.J.D. has received research grant support from Novo Nordisk for preclinical studies of liraglutide and the cardiovascular system. All other authors were employed by Novo Nordisk at the time the work was carried out, and most authors are minor shareholders in the company as part of an employee offering program. Novo Nordisk is developing liraglutide for the treatment of diabetes and obesity. Liraglutide is approved in Europe, USA, and Japan for treatment of type 2 diabetes.

References

8. Larsen J, Hyleberg B, Ng K, Dambo P 2001 Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulfonylurea treatment. Diabetes Care 24:1416–1421
20. International Agency for Research on Cancer 1994 International...
GLP-1 Activation of Rodent Thyroid C-Cells

Endocrinology, April 2010, 151(4):1473–1486

24. O’Toole K, Fenoglio-Preiser C, Pushparaj N 1985 Endocrine changes associated with the human aging process. II. Effect of age on the number of calcitonin immunoreactive cells in the thyroid gland. Hum Pathol 16:991–1000

31. O’Toole K, Fenoglio-Preiser C, Pushparaj N 1985 Endocrine changes associated with the human aging process. II. Effect of age on the number of calcitonin immunoreactive cells in the thyroid gland. Hum Pathol 16:991–1000

46. Capen CC, Martin SL 1989 The effects of xenobiotics on the structure and function of thyroid follicular and C-cells. Toxicol Pathol 17:266–293

50. Thurston V, Williams BD 1982 Experimental induction of C cell tumours in thyroid by increased dietary content of vitamin D3. Acta Endocrinol (Copenh) 100:41–45

55. Thurston V, Williams BD 1982 Experimental induction of C cell tumours in thyroid by increased dietary content of vitamin D3. Acta Endocrinol (Copenh) 100:41–45

Supplemental figure legends

Figure 1 The GLP-1 receptor was confined to thyroid C-cells in all species but was not detectable by *in situ* hybridization or *in situ* ligand binding in human thyroid C-cells.

Rat (A), cynomolgus monkey (B), and human (C) thyroid tissues are shown after immunohistochemical staining for calcitonin (green) and the GLP-1 receptor (brown). No cell types other than C-cells tested positively for GLP-1 receptors in any species. (D,E) Further human thyroid tissue is shown after immunohistochemical staining for calcitonin (brown DAB precipitate; left-hand pictures in each row), *in situ* ligand binding to the GLP-1 receptor with 125I-exendin(9-39) (bright silver grains; middle pictures in each row), and binding to the GLP-1 receptor with 125I-exendin(9-39) plus competition with unlabeled GLP-1 (bright silver grains; right-hand pictures in each row). Figure D shows normal tissue excised from a thyroid tumor, with several parafollicular groups of C-cells, and Figure E shows tissue excised *post mortem*.
(A) Rats

(Cynomolgus monkeys)

(C) Humans

Calcitonin

GLP-1 receptor

Calcitonin

GLP-1 receptor

Calcitonin

GLP-1 receptor
(D) Human: resected donor tissue

(E) Human: post-mortem donor tissue
Figure 2 Functional response studies to GLP-1 receptor agonists in rat and human C-cell lines. Figures A–D illustrate the specificity of the GLP-1 agonist responses using studies with the well-known antagonist exendin(9-39), as well as other structurally distinct compounds. Figures E–G show that the cell lines have the expected calcitonin response to calcium stimulation.

In the rat thyroid C-cell line MTC 6-23, GLP-1 receptor agonist responses (in terms of cAMP accumulation [A and B] and calcitonin release [C]) were antagonized by the GLP-1 antagonist exendin(9-39), whereas the forskolin cAMP response (B) was not. Antagonism of cAMP accumulation appears as a shift in the dose–response curves to the right and antagonism of calcitonin release appears as a simple decrease with increasing concentrations of exendin(9-39). (D) The exendin-based GLP-1 analog lixisenatide and the GLP-1-based analog taspoglutide elicited potent calcitonin release in the rat MTC 6-23 cell line.

Calcitonin secretion in (E) rat or (F) human C-cell lines was induced by calcium in the same dose–response manner in the rat MTC 6-23 and the human TT cell lines. (G) GLP-1 potentiated the effect of calcium on calcitonin release in the rat C-cell line MTC 6-23. All data shown are representative experiments from \(n = 2–4 \).
<table>
<thead>
<tr>
<th>Animal</th>
<th>GLP-1 agonist dose</th>
<th>Controls/other treatments</th>
<th>Duration of treatment</th>
<th>Blood samples</th>
<th>Statistical tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptor activation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice</td>
<td>Liraglutide, 0.03, 0.2, 1.0, or 3.0 mg/kg/day</td>
<td>Vehicle and untreated</td>
<td>Single dose</td>
<td>At timepoints up to 36 h after dosing</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Mice</td>
<td>Exenatide, 0.25 mg/kg/day once daily or 0.25 mg/kg/day c.i.</td>
<td>Vehicle by injection t.i.d. and vehicle c.i.</td>
<td>2 days</td>
<td>At timepoints up to 24 h after dosing</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Knockout mice</td>
<td>Exenatide, 0.25 mg/kg/day</td>
<td>Vehicle and untreated</td>
<td>Single dose</td>
<td>Calcium challenge: Exenatide and controls: 6 h after dosing</td>
<td>One-sided t-test</td>
</tr>
<tr>
<td></td>
<td>Calcium challenge: 4.54 mL/kg i.p.</td>
<td></td>
<td></td>
<td></td>
<td>Bioequivalence in calcitonin release for exenatide and vehicle groups was assumed if the difference was not more than two-fold</td>
</tr>
<tr>
<td>Knockout mice</td>
<td>Liraglutide, 1.0 mg/kg/day</td>
<td>Vehicle and untreated</td>
<td>Single dose</td>
<td>Calcium challenge: Exenatide and controls: 6 h after dosing</td>
<td>ANOVA</td>
</tr>
<tr>
<td></td>
<td>Calcium challenge: 4.54 mL/kg i.p.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liraglutide dose</td>
<td>Vehicle</td>
<td>Study duration</td>
<td>Timepoints after dosing</td>
<td>Statistical test</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Rats</td>
<td>0.75 mg/kg/day</td>
<td></td>
<td>6 weeks</td>
<td>At 4, 5, 8 weeks at various timepoints</td>
<td>Two-way ANOVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>After dosing up to 24 h</td>
<td></td>
</tr>
<tr>
<td>Calcium challenge:</td>
<td></td>
<td></td>
<td>4.54 mL/kg i.p. day</td>
<td>Followed by a 2-week recovery period</td>
<td></td>
</tr>
<tr>
<td>Cynomolgus monkeys</td>
<td>Liraglutide 5 mg/kg or 0.25 mg/kg/day</td>
<td>Vehicle</td>
<td>87 weeks</td>
<td>Multiple timepoints during the study and at various timepoints</td>
<td>Two-way ANOVA</td>
</tr>
<tr>
<td>Calcium challenge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(after 1st dose and after 8 weeks): 0.33 mmol/kg i.m.</td>
<td></td>
<td></td>
<td></td>
<td>Up to 24 h after dosing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcitonin protein synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice</td>
<td>Liraglutide 0.2 or 5.0 mg/kg/day</td>
<td>Vehicle</td>
<td>2 weeks</td>
<td>Not applicable</td>
<td>Student’s t-test</td>
</tr>
<tr>
<td>Animal</td>
<td>GLP-1 agonist dose</td>
<td>Control groups</td>
<td>Duration of treatment</td>
<td>Number of sections per animal: staining</td>
<td>Statistical tests</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Mice Exenatide, 0.25, 1.0, or 5.0 mg/kg/day, dose divided into 3 daily s.c. injections</td>
<td>Vehicle</td>
<td>2 weeks</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rats Liraglutide, 0.75 mg/kg/day</td>
<td>Vehicle</td>
<td>4 weeks</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hyperplasia and tumor formation

<p>| Mice Liraglutide, 0.03, 0.2, 1.0, or 3.0 mg/kg/day | Vehicle | 104 weeks | 1 section: H + E | Fisher’s exact test (incidence of hyperplasia) Peto’s model (incidence of tumors) |</p>
<table>
<thead>
<tr>
<th>Animals</th>
<th>Treatment</th>
<th>Vehicle</th>
<th>Duration</th>
<th>Staining</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>Liraglutide, 0.2 or 5.0 mg/kg/day</td>
<td>Vehicle by injection and vehicle c.i.</td>
<td>9 weeks (2-week interim assessment), followed by a 6- or 15-week recovery period</td>
<td>4 sections: immunohistochemical staining for calcitonin</td>
<td>Wilcoxon rank sum test for comparison of severity of C-cell hyperplasia</td>
</tr>
<tr>
<td>Mice</td>
<td>Exenatide, 0.25 mg/kg/day</td>
<td>Vehicle by injection and vehicle c.i.</td>
<td>12 or 16 weeks</td>
<td>4 sections: immunohistochemical staining for calcitonin</td>
<td>Fisher’s exact test</td>
</tr>
<tr>
<td>Rats</td>
<td>Liraglutide, 0.075, 0.25, or 0.75 mg/kg/day</td>
<td>Vehicle</td>
<td>104 weeks</td>
<td>1 section: H + E</td>
<td>Fisher’s exact test (incidence of hyperplasia) Peto’s model (incidence of tumors)</td>
</tr>
<tr>
<td>Cynomolgus Monkeys</td>
<td>Liraglutide, 0.25 or 5.0 mg/kg/day</td>
<td>Vehicle</td>
<td>87 weeks</td>
<td>4 sections: immunohistochemical staining for calcitonin</td>
<td>Not applicable</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 sections: H + E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cynomolgus Monkeys</th>
<th>Liraglutide, 0.05, 0.5 or 5.0 mg/kg/day</th>
<th>Vehicle</th>
<th>52 weeks, followed by a 4-week recovery period for control and 5 mg/kg/day groups</th>
<th>1 sections: H + E</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 sections: double immunohistochemical staining for calcitonin and PCNA</td>
<td></td>
</tr>
<tr>
<td>Cynomolgus monkeys</td>
<td>Liraglutide, 0.05, 0.5 or 5.0 mg/kg/day</td>
<td>Vehicle</td>
<td>13 weeks, 1 section: H + E</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>

followed by a 2-week recovery period for control and 5 mg/kg/day groups

| Cynomolgus monkeys | Liraglutide, 0.05, 0.5 or 5.0 mg/kg/day | Vehicle | 28 days, 1 section: H + E | Not applicable |

All doses were administered by subcutaneous injection unless stated otherwise.

c.i., continuous infusion; i.m., intramuscular; i.p., intraperitoneal; PCNA, proliferating cell nuclear antigen.
Table 2: Long-term dosing with liraglutide does not cause C-cell proliferation in non-human primates. The table shows the incidence (%) of C-cell hyperplasia in cynomolgus monkeys after liraglutide dosing for up to 87 weeks.

<table>
<thead>
<tr>
<th>Study duration (weeks)</th>
<th>n per group</th>
<th>Liraglutide dose (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>87</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
SUPPLEMENTAL METHODS

Immunohistochemistry for co-localization of calcitonin and GLP-1 receptors in C-cells. We used the Vectastain ABC/ Horseradish peroxidise (HRP)-kit (Vector PK-6100) for single-labeling immunohistochemistry. We microwaved the de-paraffinized sections for 3 × 5 min at 90 °C in tris(hydroxymethyl)aminomethane (Tris)/ethylene glycol tetraacetic acid (EGTA) buffer (pH 9.0) for antigen retrieval. We immersed the slides in 3% hydrogen peroxide in ethanol for 10 min to block endogenous peroxidase activity, washed and used avidin (cat. X0590, DAKO) and biotin (cat. X0590, DAKO) blocks for 10 min each before incubating the slides in primary antibody in Tris-buffered saline (TBS) buffer containing 8% casein for 1 h at room temperature or overnight at 4 °C. We then incubated the sections for 30 min with a secondary antibody (biotinylated goat anti-rabbit [Jackson code:111-065-144]), diluted 1:3000 in TBS containing 8% casein, and treated them with an avidin-biotin peroxidase complex (Vectastain ABC/HRP, Vector PK-6100) before visualizing and counterstaining them with the chromogen 3’.3’-DAB (Sigma D-5905) and Mayer’s hematoxylin, respectively. In the rat tissue, we applied a Universal HRP-Polymer Kit (Mach 4) (cat. M4U534G, BioCare Medical) instead of the Vectastain ABC/HRP-kit. We double-stained the GLP-1 receptor and calcitonin in the C-cells with a fluorochrome-labeled calcitonin method. We conjugated the polyclonal anti-human calcitonin rabbit antibody using the Alexa-488 conjugation kit (cat. A-20181, Molecular Probes) following the manufacturer’s instructions. The resulting antibody conjugate had an average
of 3.4 Alexa-488 molecules per antibody and a concentration of 1.6 mg/mL and an 8 μg/mL preparation in phosphate-buffered saline (PBS) with 0.5% bovine serum albumin (BSA), 0.05% NaAz and 0.05% Tween-20 was used. We incubated sections in 10% rabbit serum (cat. X0902, Dako) for 1 h at room temperature to block previously applied rabbit immunoglobulin G (IgG), and then with the anti-calcitonin Alexa-488 antibody for 1 h at room temperature. As a control, we incubated the Alexa-488 conjugated calcitonin antibody (8 μg/mL) with 2 μg/mL human calcitonin (cat. T3535, Sigma) in PBS for 30 min and then applied the antibody to the slides and incubated them for 1 h at room temperature. We added propidium iodide (5 μg/mL) to the slides for the last 10 min of each staining to stain the nucleus.

Positive and negative controls: We used pancreatic tissue from all species as positive controls for the GLP-1 receptor antibodies and normal rabbit serum (cat. XO902, Dako Cytomation) as a primary antibody control. Omission of the primary GLP-1 receptor antibodies was used as a control for the secondary antibody.

Specificity test: We conducted a pre-absorption test by incubating the GLP-1 receptor antibodies (concentrations of 0.01–100 μg/μL) with human GLP-1 peptide for 1 h at room temperature. We then applied this solution to slides and processed them according to the ABC-kit/Mach 4 protocol described above.

Cell line culturing. We cultured the rat thyroid C-cell line MTC 6-23 (ATCC
accession CRL-1607) in standard DMEM (cat. BE 12-604, Bio-Whitaker) containing 15% (v/v) heat inactivated horse serum (cat. 26050-088, Gibco), 100 U/mL 100 μg/mL P/S (cat. DE17-602E, Bio-Whitaker). We obtained the rat thyroid C-cell line CA-77 as cryopreserved cells from Dr Kervran (Hôpital Arnaud de Villeneuve, Montpellier, France), in passage 27. We cultured the cells in 1:1 standard DMEM and Ham’s F-10 medium (cat. 41550-021, Gibco) containing 10% (v/v) heat-inactivated FBS (cat. 16140-071, Gibco), and P/S. We cultured the human thyroid C-cell line, TT (7) (ATCC accession CRL-1803), in Ham F-12K medium (cat. 21127-022, Gibco) containing 10% (v/v) FBS and P/S. The INS-1E cell line was available within Novo Nordisk and we grew the cell line RPMI1640 with glutaMAX™ medium (cat. 61870-010, Gibco) supplemented with 10% FBS, 1 mM sodium pyruvate (cat. 11360-039, Gibco), 10 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) (cat. 15040-033, Gibco), 50 μM mercaptoethanol (M-3148, Sigma), and P/S.

Receptor binding assay. We used 125I-GLP-1(7-37) (specific activity, 2200 Ci/mmol) as the tracer. We coated 48-well tissue culture plates with 200 μL of 0.1 mg/mL poly-L-lysine (cat. p-6282, Sigma) for 1 h and washed them with PBS. We plated the cells at a concentration of 2.0 × 10^5 or 2.5 × 10^5 cells per well and incubated them at 37 °C (5% CO₂) for 24 h. Prior to the experiment, we evaluated cell confluency and uniformity by microscopy. On the day of the experiment, we removed the medium and washed the cells in 500 μL of buffer (10 mM HEPES, 130 mM NaCl, 4.7 mM KCl, 1.4 mM MgSO₄, 2.5 mM NaH₂PO₄,
1 mM EGTA, 3 mM D-glucose, 0.2% human serum albumin [cat. A-1887, Sigma] and 800,000 KIU aproprotinin/l [cat. 616399, Calbiochem], pH 7.4).

We added 450 µl of buffer, and left the cells to rest for 30 min at 37 °C. We diluted the tracer and peptide in buffer and added 25 µL of each, to each well. We removed aliquots of buffer into minisorp tubes to allow tracer total counts, and left them until the assay was finalized. We incubated the cells for 2 h at 37 °C, and stopped the assay by removing the supernatant. We gently washed the cells once with 500 µl of cold (4 °C) buffer, after which we added 0.5 mL 0.1M NaOH and left the plates at 4 °C for 15 min. We transferred the lysates to individual minisorp tubes and washed the wells with 250 µL of water, which was then combined with the lysate in the corresponding tubes. Radioactivity was counted in a Packard Cobra II Auto Gamma counter to assess the radioactivity in each tube. All samples were assessed in triplicate, except for the total counts, which were assessed in duplicate. The raw counts per min were transformed to pM and receptors/cell before further calculations.

cAMP assay. We diluted the peptides in 0.02% Tween-20 in PBS, and added them in 50-µL aliquots to the wells. We grew the cells in their normal medium, unless otherwise stated. We counted the cells, and suspended 100,000 cells per 50 µL volume in the stimulation buffer accompanying the Flashplate system (containing 0.1% BSA). Each concentration of compound was added in duplicate, whereafter 100,000 cells were added in 50-µL volumes to each well. We shook the plates for 5 min and incubated them for 25 min at room
temperature. We determined the accumulated cAMP with the detection mix from the assay. We dissolved forskolin in DMSO at 10 mM, and diluted it in 0.02% Tween-20 in PBS. The resulting concentration was 1% DMSO in the highest concentration. This concentration did not influence the assay. Exendin(9-39) and GLP-1 receptor agonists were added in 25-µL aliquots.

Calcitonin secretion in vitro. We added 0.9 ml of media and 0.1 ml of peptide diluted in media. We tested each concentration of each compound in triplicate. We shook the plates gently and incubated them for 2 h at 37 °C. We stopped the assay by removing the supernatant for calcitonin analysis. Forskolin was dissolved in DMSO at 10 mM, and diluted in media. The highest resulting DMSO concentration was 0.1%. This concentration did not influence the assay. We added exendin(9-39) and GLP-1 receptor agonists in 100-µl aliquots.

Calcitonin assays. The following assays were used: immunosorbent radiometric assay (cat. 50-5000, Immutopics) for rat and mouse calcitonin (lower limit of quantification [LLOQ]: 2.87 pg/mL) and ultra-sensitive RIA (Diagnostic Systems Laboratories) for cynomolgus monkeys (LLOQ: 7.5 pg/mL) and human in vitro samples. The concentration in a sample was found by interpolation from a series of calibrators included in each set-up. Each set-up is accepted on the basis of two or three controls (control I and II from the kit, and a plasma pool for plasma samples). The controls are run twice in
duplicate. Two control values outside the acceptance range are permitted, but not two controls in the same range as the sample.

Western blotting. At 80% confluence, we rinsed the C-cell monolayers with PBS and directly lysed them in the tissue culture flasks with a lysis buffer containing SDS; final concentrations: 1/2 volume 4 × lithium dodecyl sulfate buffer [cat. NP0007, Invitrogen] - 1/5 volume 10 × reducing agent [cat. NP0009, Invitrogen] – 1/100 volume 200 × protease inhibitor cocktail III [cat. 539134, Calbiochem] – 5 mM EDTA, in ultrapure water). We obtained thyroid glands from 6–8-week-old female Wistar rats immediately after euthanasia with isoflurane anesthesia and exsanguination. We homogenized the glands in the same lysis buffer used for C-cell lines. Following denaturation of the lysates at 70 °C for 10 min, we performed SDS-PAGE on precast 4–12% gradient gels according to the manufacturer’s instructions (NuPAGE™ gels, cat. NP0322BOX, Invitrogen). Identical protein amounts were loaded for each lysate, based on Coomassie blue staining of SDS-PAGE gels. To estimate molecular weights, we included a prestained protein size ladder (cat. RPN 800, Amersham Biosciences) on each gel. Proteins were electrotransferred to 0.45 μm PVDF membranes (cat. LC 2005, Invitrogen) in an XCell IIITM Blot module (Invitrogen) using 1 × transfer buffer (cat. NP0006, Invitrogen) - 10% methanol for 1 h at 30 V at room temperature. Following transfer, we blocked the membranes for 1 h at room temperature in 5 wt% fat-free skimmed milk powder in 1 × PBS with 0.1% Tween20 (PBS-T). Then we incubated
membranes with primary antibody diluted in 5 wt% fat-free skimmed milk powder in PBS-T (5% bovine lacto transfer technique optimizer [BLOTTO]) for 1 h at room temperature. We used anti-human GLP-1 receptor peptide rabbit serum 102B at a dilution of 1:2000 as the primary antibody and GAPDH mouse monoclonal antibody (cat. ab8245, Abcam, Cambridge, UK) – raised against rabbit muscle GAPDH – at a dilution of 1:100,000 as loading control. The membranes were washed 4 × 15 min in PBS-T, and incubated in HRP conjugated secondary antibody diluted in 5% BLOTTO buffer for 1 h at room temperature. We used HRP-conjugated horse anti-rabbit IgG (cat. 7074, Cell Signaling Technology) at a dilution of 1:10000 and HRP-conjugated goat anti-mouse IgG (cat. 7076, Cell Signaling Technology) a dilution of 1:20000 as secondary antibodies against anti-human GLP-1 receptor peptide and GAPDH mouse monoclonal antibody, respectively. Finally, we washed the membranes 3 × 5 min in PBS-T, and visualized protein bands using ECLAdvance chemiluminescent substrate (cat. RPN2135V1, GE Healthcare) and a LAS3000 CCD camera (Fujifilm). We performed quantitative image analysis with MultiGauge software (v 2.3, Fujifilm).

Human GLP-1 receptor peptide absorption control: We added a peptide (described in detail in the Immunohistochemistry methods section; corresponding to the immunogenic peptide used to generate the rabbit anti-GLP-1 receptor serum) to the serum, diluted 1:2000 to a 84 nM final concentration (0.2 µg/mL), and incubated it for 1 h at room temperature before adding it to PVDF membranes.
Quantitative PCR.

We lysed C-cell lines with 2–3 mL of guanidine hydrochloride lysis buffer (6 M guanidine hydrochloride [GuHCl]- 25 mM citric acid – 0.5 % N-lauroyl sarcosine). We extracted total RNA by acid phenol/1-bromo-3-chloropropane followed by binding to silica particles. The RNA was eluted in nuclease-free water. We evaluated the RNA quality and quantity on an Agilent 2100 Bioanalyzer using the RNA 6000 Pico LabChip Kit, according to the manufacturer’s instructions. We synthesized first-strand cDNA using the RETROscript™ First Strand Synthesis Kit for RT-PCR according to the manufacturer’s manual (Ambion) using a fixed RNA amount of 10 ng RNA. We carried out quantitative (TaqMan) PCR as follows: for each cDNA, we performed sample duplicate PCR amplification in 25 µL reactions containing 1 µL cDNA, 1 × TaqMan Universal PCR mastermix (Applied Biosystems), the specific forward primer, reverse primer and TaqMan probe, and AmpErase® Uracil N-Glycosylase (Applied Biosystems). Thermal cycling was done in an Abi Prism® 7000 Sequence Detection System cycler under the following conditions: 50 °C for 5 min, 95 °C for 10 min, 45 x [95 °C for 15 sec – 60 °C for 30 sec – 72 °C for 30 sec], 72°C for 5 min. The selected gene targets were the rat GLP-1 receptor (gen bank number NW_043432), human GLP-1 receptor (AL035690), rat beta-actin (gen bank number NW_042778), and human beta-actin (NT_007819). The rat TaqMan PCR primers (forward [Fw], reverse [Rv]) and probes used for the quantitation of the GLP-1 receptor and beta actin were
as follows: GLP-1 receptor Fw, 5’-GGTGCAAGAAATGGCGAGAATAC-3’; GLP-1 receptor Rv, 5’-GAAGGTCCGGTTGCAGAACA-3’; GLP-1 receptor probe, 5’-CCAGCGCTCCCTGACTGAGGATCC-3’; beta actin Fw, 5’-CACAGCTGAGGGAAATCGT-3’; beta actin Rv, 5’-TGGATGCCACAGGATTCATCC-3’; beta actin probe, 5’-ATGGCCACTGCCGCATCTCTTC-3’. Similarly, TaqMan PCR primers and probes used for the quantitation of human GLP-1 receptor and human beta-actin were: GLP-1 receptor Fw, 5’-GGTGCAAGAAATGGCGAGAAT-3’; GLP-1 receptor Rv, 5’-GAAGGTCCGGTTGCAGAACA-3’; GLP-1 receptor probe, 5’-CCGACGCCAGTGCCAGCG-3’; beta actin Fw, 5’-TGGCACCACACCTTCTACAATGA-3’; beta actin Rv, 5’-GCCAGGTCCAGACGCAGGAT-3’; beta actin probe, 5’-CCTGAACCCCAGGCCAACC-3’. We performed relative quantitation of GLP-1 receptor mRNA, according to the TaqMan reagent manufacturer’s recommendations using the \(\Delta \Delta C_T \)-method (Applied Biosystems, 1997).

Animal studies.

Dosing: We used the following standard dosing volumes for both test substances and vehicle controls: 5 mL (mice), 1–2 mL (rats), and 1.5–2.5 mL (cynomolgus monkeys). For infusion pump studies with exenatide, we implanted osmotic minipumps (model 1003D or 2004, Alzet) surgically on the backs of mice during anesthesia according to local veterinary procedures. We loaded minipumps prior to implantation and then allowed animals a minimum 24-h recovery period without sampling procedures. It was therefore not
possible to evaluate drug exposure or plasma calcitonin during the first 24 h after surgery. In the 12-week infusion study, we replaced minipumps twice under general anesthesia at 4-week intervals to ensure continued drug exposure.

Statistical analysis: We transformed plasma calcitonin data into natural logarithm (ln) values to produce a normal distribution. We defined the early change in calcitonin release as the change from baseline to day 28, where the baseline value was the average of two measurements (taken at days 28 and 14 before treatment), and we corrected the values for baseline differences in age at the start of dosing between groups. We determined the focal C-cell hyperplasia score histopathologically at necropsy after 1–16 months of dosing. The calcitonin changes (ln transformed) and the focal C-cell hyperplasia scores were treated as continuous variables. We examined the correlation between the early calcitonin change and the terminal score on focal C-cell hyperplasia by regression analysis using individual animal data.

Calcitonin release in humans.

The 9 clinical trials included in the calcitonin assessment were LEAD studies 1–6 (NCT00318422, NCT00318461, NCT00294723, NCT00333151, NCT00331851, NCT00518882; ClinicalTrials.gov), Japanese trials (NCT00393718, NCT00395746) and the obesity trial (NCT00480909, NCT00422058). Calcitonin levels were measured by a highly specific and sensitive chemiluminescent enzyme immunoassay (Immulite 2000, DPC). For
this assay, the upper normal range was 5 pg/mL for females, 8.4 pg/mL for males and the LLOQ was 0.7 pg/mL except for the Japanese trials, where they were 4.43 pg/mL, 5.87 pg/mL and 2 pg/mL respectively.

Statistical analysis: Proportion of subjects with calcitonin <20 pg/mL at baseline increasing to >=20 pg/mL (clinically relevant cut-off value) were summarized by week (20-28, 48-52, 104). In addition, the two trials of 104 weeks duration (LEAD 2+3) were analyzed using a repeated measurement analysis for normal censored data with trial, treatment and sex as fixed effects and patient as random effect. Data were log transformed prior to analysis, but estimated geometric means from the model were presented in the original scale.

A subset of patients from two LEAD studies underwent a calcium stimulation test at baseline and week 26 (LEAD 4) or week 52 (LEAD 3) to assess the functional C-cell mass. Subjects were given 2 mg/kg of intravenous elemental calcium, and blood samples for calcitonin were taken before (basal level), 5 and 10 min after calcium stimulation. Calcitonin levels were analyzed with the same assay as for fasting calcitonin.

Statistical Analysis: Two endpoints were analyzed from the calcium stimulation test; Peak calcitonin levels and peak:basal calcitonin ratios.
Both endpoints were analyzed with an analysis of covariance with treatment and sex as fixed effects and baseline value as covariate. Data were log transformed prior to analysis, but estimated least square means were presented in the original scale.
Supplemental Information

Summary of exploratory investigations into alternative causes of C-cell proliferation in rodents

1. Direct mitogenic effect of C-cell GLP-1 receptor activation

GLP-1 receptor agonists could have a direct mitogenic effect on the GLP-1 receptors on C-cells. However, this hypothesis was not supported by experimental data. One human and two rat C-cell lines were used to test for a direct mitogenic effect of GLP-1, exenatide and liraglutide. No effect of any GLP-1 receptor agonist was found. Fetal calf serum was used as a common positive control, with which a mitogenic response was seen in all cell lines. In this context, it is important to note that a direct proliferative/anti-apoptotic effect on pancreatic beta-cells is part of the GLP-1 receptor-mediated antidiabetic mode of action for this class of compounds. GLP-1 receptor agonists have been shown to stimulate proliferative pathways in pancreatic beta-cells in vitro (1). Additionally, GLP-1 receptor agonists are anti-apoptotic in primary rat pancreatic islet-cell cultures via activation of cyclic AMP-dependent pathways (2). In vivo, however, sustained proliferative effects on beta-cells are not seen in rats after treatment with liraglutide (3). Thus, only beta-cells affected by a diabetic disease state proliferate in response to GLP-1 receptor agonists. Also, despite these effects, no treatment-related proliferative lesions were observed in beta-cells or other GLP-1-receptor-bearing cell types except for C-cells after 2 years of dosing with liraglutide or exenatide in rodents.

References

2. Cross-reactivity to other mitogenic receptors

C-cell tumors could be caused by stimulation of GLP-1 receptor agonists via cross-reactivity to another mitogenic receptor. This is not supported by experimental data because liraglutide is very selective for the GLP-1 receptor. There is no cross-reactivity, even to the closely homologous glucagon receptor, and standard screening panel assays including more than 75 receptors were negative. Receptors within the following receptor families were tested: androgen, estrogen, progesteron, chemokine, somatostatin, gastrin releasing peptide, insulin-like growth factor-1, vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, substance P/ neurokinin, neurotensin/neuromedin, adenosine, adrenergic, dopamine, histamine (H1), serotonin (5-HT1), prostaglandin, glucagon. Further to this, binding studies were performed to receptors that, from the literature, could be ascribed a mitogenic role for rat C-cells. These receptors, which have been linked to early growth responses included bombesin, neuromedin and cholecystokinin (CCK). No cross-reactivity of GLP-1, liraglutide or exenatide to rat bombesin and CCK2 receptors was found. Also, liraglutide had no cross-reactivity to human bombesin 1, 2 or 3 or human neuromedin 1 or 2 receptors. Finally, no cross-reactivity was found to human
calcitonin receptors tested to exclude a feedback loop mechanism where liraglutide could cross-react with the calcitonin receptor.

Figures In vitro mitogenicity assays.

The rat C-cell line MTC 6-23 (A) and the human C-cell line TT (B) were incubated for 48 h with test substances (0.1–1.0 µM), and ligand-specific proliferation was determined by ³H-thymidine incorporation. Serial dilutions of fetal calf serum (FCS; 0.2 vol % FCS, 0.5 vol % FCS, 1 vol % FCS, 2 vol % FCS, 5 vol % FCS and 10 vol % FCS in assay medium) were included as positive controls for proliferation capacity of the cell lines used in each assay. Data represent the mean (SD) of no less than six measurements (at least two independent experiments with triplicate determination in each experiment).
3. Indirect calcium-induced stimulation of C-cells

The known increase in intestinal transit time following dosing with glucagon-like peptide-1 (GLP-1) and other GLP-1 receptor agonists could lead to an increased uptake of plasma calcium, resulting in increased calcitonin synthesis to counteract hypercalcemia. This could initiate C-cell stimulation by a mechanism similar to that proposed for the C-cell hyper- and neoplasia following dosing with Vitamin D3 or the PTH agent, teriparatide (Forteo®), both of which increase plasma calcium (1,2). However, consistently increased plasma calcium levels were not observed in rats in any of the toxicity studies performed with liraglutide. On the contrary, an initially marked diuretic effect due to liraglutide led to a calciuretic effect, lowering plasma calcium. Thus, no evidence was found to support this as a cause of C-cell proliferation in rodents.

References

Methods

Culture of human and rat C-cell lines: The rat C-cell line MTC 6-23 (medullary thyroid carcinoma, ATCC accession# CRL-1607) was obtained as cryopreserved cells at passage number 23. The MTC 6-23 cells were maintained in DMEM medium (# 41965-039, Gibco) containing 15 % (v/v) heat inactivated horse serum (# 26050-088, Gibco) and 100 U/mL penicillin and 100 µg/mL streptomycin (# 15140-122, Gibco). The cells were used for mitogenicity assay between passages 6 and 15 after thawing.

The human thyroid cancer C-cell line, TT (ATCC accession# CRL-1803) was obtained as cryopreserved cells at passage number 33. The TT cells were maintained in F-12 Nutrient Mixture/Ham’s (# 21765-029, Gibco) containing 10 % (v/v) heat inactivated bovine serum (# 26140-079, Gibco), 100 mM sodium pyruvate (S8636, Sigma), 2 mM glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin (# 10378-016, Gibco). The cells were used for mitogenicity assay between passages 4 and 16 after thawing.

Both cell lines were cultured at 37°C in a humidified 95% air/5 % CO2 atmosphere, and subcultured every 3–4 days for routine maintenance.

In vitro mitogenicity assay of human and rat C-cell lines:
For mitogenicity assays, cells were trypsinized, plated in poly-D-lysine coated 96-well plates (Nucleon 167008) in 100 µl assay medium at 5 × 10^4 cells per well (rat MTC 6-23) or 1 × 10^5 cells per well (human TT) and cultured overnight. 100 µl C-cell assay medium [1:1 mix of F-12 Nutrient Mixture-Ham (# 21765-029, Invitrogen) and DMEM containing 4.5 g/l glucose (# 41965-039, Invitrogen), 1 mM sodium pyruvate (#S 8636, Sigma), 5 µM FeSO4, 5 µg/mL transferrin (#11107-018, Gibco), 7.5 mM HEPES (# 15630-080, Gibco), 1 % non-essential amino acids solution (# 11140-035,
Gibco), 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM glutamine (# 10378-016, Gibco), 0.2 % v/v FCS (# 26140-079, Gibco)] containing 0.2–2.0 µM of the test substance was added to the plates, to obtain a final concentration of 0.1–1.0 µM of test substance. To ensure a positive control in each assay, serial dilutions of FCS in assay media (0.2 vol % FCS, 0.5 vol % FCS, 1 vol % FCS, 2 vol % FCS, 5 vol % FCS and 10 vol % FCS) were included as positive controls. Plates were then incubated for 48 h at 37° C. Then, \(^3\)H-methylthymidine was added (6.25 µCi/mL, Amersham), and \(^3\)H-thymidine incorporation was allowed to take place for 4 h at 37° C. The cells were then washed 1 × with PBS to remove non-incorporated free \(^3\)H-thymidin, trypsinized for 5 min, and transferred to filter plates (Unifilter-96, GF/C, Perkin Elmer) using a Filtermate Harvester (Packard). The filterplates were air-dried at 50° C before addition of scintillation fluid (Microscint O, Perkin Elmer). Incorporated \(^3\)H-thymidine was measured in a β-counter (TopCount NXT, Packard). Each test substance concentration was assayed in triplicate for each experiment. The experiments were repeated at least twice.