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Fig. 2) or osteoclast number due to sitagliptin treatment
(Supplemental Table 9). BSE analysis of trabecular bone
mineralization profiles revealed significantly increased
mineralization in sitagliptin-treated male, female, and
OVX mice (Supplemental Fig. 3).

Effect of genetic inactivation of DPP-4 on bone quality
Body weight was not significantly different in male or

female Dpp4�/� vs. Dpp4�/� control mice; however,
Dpp4�/� OVX females weighed significantly less than their
OVX Dpp4�/� female controls (Supplemental Fig. 4).
DEXA revealed significant reductions in femoral and verte-
bral aBMD and BMC for OVX knockout mice, but no
changes were observed in male or female Dpp4�/� mice (Ta-
ble 6). Femoral and vertebral vBMD evaluated by micro-CT
didnotrevealanychanges inmale, female,orOVXDpp4�/�

vs. Dpp4�/� mice (Table 6). OVX Dpp4�/� mice had sig-
nificantly reduced femoral geometry with reductions in an-
terior-posterior diameter, moment of inertia, cortical thick-
ness, and cross-sectional bone area (Table 7). Accordingly,
three-point bending revealed a decrease in stiffness (Supple-
mental Table 10), and femoral neck fracture revealed de-

creases in ultimate load, energy to failure, and stiffness for
OVX Dpp4�/� mice (Supplemental Table 11). No changes
were seen in the femoral mechanics of male and female
Dpp4�/� mice (SupplementalTable11). Small changeswere
seen in male Dpp4�/� mice with reductions in vertebral ul-
timate load, Tb.Th. (Supplemental Tables 12 and 13 and
Supplemental Fig. 6). Female Dpp4�/� mice exhibited an
increase in vertebral Young’s modulus but had reductions in
Tb.N. and length of node-free strut, a measure of trabecular
connectivity (Supplemental Tables 12–14). Osteoclast staining
revealed no significant differences for male, female, or OVX
groups (Supplemental Table 15), and no major changes were
seeninthetrabecularmineralizationprofiles(SupplementalFig.
5) or the mineral apposition rates (Supplemental Fig. 6) across
Dpp4 genotypes in male or female mice.

Discussion

Effects of pioglitazone treatment on bone quality
Pioglitazone treatment led to increased weight gain and

marrow fat in male, female, and OVX mice. These findings

TABLE 3. Vertebral compression of pioglitazone-treated and control mice

Male Female OVX

Vehicle Pio Vehicle Pio Vehicle Pio

n 8 10 8 12 8 10
Structural properties

Ultimate load (n) 24.9 � 2.5 19.8 � 1.7 25.8 � 2.5 22.8 � 2.3 19.9 � 2.1 12.5 � 0.8a

Failure displacement (mm) 0.31 � 0.03 0.38 � 0.10 0.42 � 0.07 0.27 � 0.03 0.37 � 0.05 0.38 � 0.04
Energy to failure (mJ) 4.6 � 0.6 4.8 � 0.8 6.9 � 1.4 3.4 � 0.3a 4.3 � 0.8 3.4 � 0.57
Stiffness (N/mm) 131.0 � 8.8 100.0 � 9.7a 113.3 � 11.1 148.9 � 23.2 108.8 � 17.6 66.7 � 6.7

Material properties
Ultimate stress (MPa) 10.7 � 1.0 7.9 � 0.8a 10.3 � 1.1 9.7 � 1.0 9.3 � 1.0 5.3 � 0.2a

Failure strain (%) 9.5 � 0.9 11.7 � 1.6 13.1 � 2.2 8.2 � 0.8 11.9 � 1.6 12.3 � 1.2
Toughness (MPa) 0.59 � 0.07 0.57 � 0.10 0.87 � 0.18 0.44 � 0.05a 0.64 � 0.12 0.44 � 0.06
Young’s modulus (MPa) 183.8 � 13.5 130.1 � 15.1a 145.9 � 15.8 209.3 � 31.5 162.9 � 29.2 87.9 � 8.5a

Values reported as mean � SE. MPa, Megapascals.
a Significant (P � 0.05) compared with vehicle-treated control.

TABLE 4. DEXA and micro-CT results for sitagliptin-treated and control mice

Male Female OVX

Vehicle Sitagliptin Vehicle Sitagliptin Vehicle Sitagliptin

n 11 10 8 8 9 12
Femoral aBMD

(g/cm2)
0.0541 � 0.0010 0.0548 � 0.0010 0.0587 � 0.0008 0.0587 � 0.0006 0.0463 � 0.0007 0.0462 � 0.0006

Femoral BMC (g) 0.0289 � 0.0012 0.0311 � 0.0011 0.0297 � 0.0007 0.0299 � 0.0007 0.0191 � 0.0006 0.0198 � 0.0004
Femoral vBMD

(g/cm3)
1.090 � 0.016 1.117 � 0.019 1.182 � 0.009 1.195 � 0.010 1.184 � 0.005 1.186 � 0.004

Vertebral aBMD
(g/cm2)

0.0258 � 0.0009 0.0295 � 0.0006* 0.0303 � 0.0009 0.0321 � 0.0011 0.0240 � 0.0008 0.0240 � 0.0010

Vertebral BMC (g) 0.0020 � 0.0002 0.0028 � 0.0001* 0.0026 � 0.0001 0.0026 � 0.0001 0.0015 � 0.0001 0.0014 � 0.0001
Vertebral vBMD

(g/cm3)
0.225 � 0.011 0.253 � 0.012 0.268 � 0.018 0.390 � 0.022* 0.288 � 0.025 0.313 � 0.018

Values reported as mean � SE.
* Significant (P � 0.05) compared with vehicle-treated wild-type control.
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are consistent with previous reports of weight gain and
increased bone marrow fat (13, 14, 26) associated with
TZD treatment. Pioglitazone-treated male, female, and
OVX mice experienced significant reductions in femoral
aBMD and BMC; however, these changes were not seen
when femoral BMD was measured volumetrically by mi-
cro-CT. Additionally, no changes were seen in the femoral
geometry or mechanics of pioglitazone-treated mice. The
lack of changes seen in femoral mechanics were unexpected,
given reports of fractures of the distal upper and lower limbs
and not of the spine in human subjects exposed to TZDs for
several years (7, 27, 28). Because cortical bone has a lower
surface area and overall slower turnover rate than trabecular
bone, a longer treatment period may be required to detect
greater effects of pioglitazone on the skeleton. Consistent
with this possibility, reductions in three-point bending me-
chanics were detected in rats treated with a higher dose of
pioglitazone for 4 months, yet no changes were seen in fem-
oral neck fractures (17).

Although pioglitazone negatively affected vertebral
mechanics of all treated mice, male mice exhibited the
greatest sensitivity to the metabolic and skeletal effects of
pioglitazone with reductions in trabecular architecture
and connectivity as well as reduced bone formation. The
results obtained here with pioglitazone are consistent with
observations reporting reductions in vertebral strength

(29), trabecular architecture (13, 29), and mineral appo-
sition (13, 29) in male mice treated with rosiglitazone.

Pioglitazone-treated female mice did not exhibit
changes in vertebral vBMD, trabecular architecture, and
connectivity, suggesting that the reductions in vertebral
mechanics are not likely due to adverse effects on bone
mineral. Energy to failure and toughness are largely in-
fluenced by collagen and not necessarily by changes in the
mineral phase or density of bone (30–32). Furthermore,
no significant changes were seen in bone formation pa-
rameters in female mice treated with pioglitazone. This
finding was unexpected, given that clinical studies re-
vealed an increased risk of fracture in women treated with
pioglitazone (27, 28, 33). However, a study by Sottile et al.
(34) reported a dissociation between the doses of rosigli-
tazone required to generate metabolic effects without pro-
ducing significant differences in BMD or histomorpho-
metric parameters in female rats. The reductions in energy
to failure and toughness in pioglitazone-treated female
mice are consistent with negative effects on the collagen
network (30, 31). Interestingly, TZD activation of
PPAR-� resulted in suppression of type 1 collagen in a
stromal cell line (10), and PPAR-�-mediated reductions in
collagen biosynthesis are dependent on levels of estrogen
(35, 36). Nevertheless, the effects of PPAR-� activation on
collagen and bone strength are not fully understood.

TABLE 5. Vertebral trabecular architecture for sitagliptin-treated and control mice

Male Female OVX

Vehicle Sitagliptin Vehicle Sitagliptin Vehicle Sitagliptin

n 11 10 8 8 9 11
BV/TV (%) 28.2 � 1.1 30.8 � 1.0 19.6 � 0.9 27.6 � 1.9a 20.5 � 1.7 21.7 � 1.4
Tb.Th. (�m) 71.4 � 0.4 70.9 � 0.6 69.7 � 1.9 76.1 � 1.4a 64.7 � 0.7 63.9 � 0.8
Tb.N. (mm�1) 3.9 � 0.2 4.3 � 0.1 2.8 � 0.1 3.6 � 0.2a 3.2 � 0.3 3.4 � 0.2
Tb.Sp. (�m) 201.3 � 7.4 204.1 � 6.1 250.0 � 16.3 178.5 � 20.6a 220.0 � 22.6 190.6 � 19.8

Values reported as mean � SE.
a Significant (P � 0.05) compared with vehicle-treated control.

TABLE 6. DEXA and micro-CT results for Dpp4�/� (KO) and WT mice

Male Female OVX

WT KO WT KO WT KO

n 15 23 14 19 10 13
Femoral aBMD

(g/cm2)
0.0548 � 0.0009 0.0523 � 0.0010 0.0538 � 0.0007 0.0547 � 0.0010 0.0498 � 0.0011 0.0446 � 0.0004a

Femoral BMC (g) 0.0276 � 0.0008 0.0263 � 0.0008 0.0251 � 0.0006 0.0263 � 0.0008 0.0240 � 0.0007 0.0197 � 0.0003a

Femoral vBMD
(g/cm3)

1.264 � 0.008 1.259 � 0.006 1.285 � 0.006 1.273 � 0.004 1.265 � 0.005 1.251 � 0.026

Vertebral aBMD
(g/cm2)

0.0267 � 0.0009 0.0247 � 0.0007 0.0262 � 0.0009 0.0272 � 0.0007 0.0203 � 0.0012 0.0150 � 0.0010a

Vertebral BMC (g) 0.0020 � 0.0002 0.0017 � 0.0001 0.0019 � 0.0002 0.0021 � 0.0001 0.0011 � 0.0001 0.0005 � 0.0001a

Vertebral vBMD
(g/cm3)

0.265 � 0.020 0.265 � 0.011 0.279 � 0.022 0.265 � 0.013 0.292 � 0.022 0.260 � 0.015

Values reported as mean � SE. WT, Wild type; KO, knockout.
a Significant (P � 0.05) compared with wild-type control.
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Effects of sitagliptin on bone quality
We originally hypothesized that sitagliptin may pro-

duce positive effects on bone due to its regulation of mul-
tiple gut hormones such as GIP and GLP-2, known to
enhance bone formation and/or prevent bone resorption
(37). The GIP receptor is expressed in osteoblasts (38), and
GIP increased collagen type 1 expression and alkaline
phosphatase activity in osteoblast-like cells (38) as well as
protected osteoblasts from apoptosis (39). GIP receptors
have also been found on osteoclasts and GIP inhibits bone
resorption in vitro (40). Gipr�/� mice exhibit low bone
mass due to decreased bone formation and increased
bone resorption (39, 41).

The proglucagon-derived peptide, GLP-2, is also a
DPP-4 substrate (42, 43). Exogenous GLP-2 administra-
tion reduced serum and urine markers of bone resorption
and increased hip BMD in a dose-dependent manner in
postmenopausal women and improved spinal BMD in
short-bowel patients with no colon (44–46). The skeletal
role of the proglucagon-derived peptide, GLP-1, cose-
creted together with GLP-2, is less understood, but the
GLP-1 receptor is expressed in rodent thyroid C cells, and
GLP-1 increases calcitonin secretion and gene expression
in mice and rats (47, 48). Glp1r�/� mice exhibit cortical
osteopenia and reduced levels of calcitonin, suggesting
that GLP-1 may have an indirect role in murine bone me-
tabolism, possibly through a calcitonin-mediated path-
way (48).

Female mice treated with sitagliptin exhibited signifi-
cant improvements in vertebral vBMD and trabecular ar-
chitecture. Whether these positive changes reflect the cu-
mulative actions of GIP, GLP-1, and GLP-2, or actions of
sitagliptin on other substrates acting on the skeleton, can-
not be determined from the present study. The improve-
ments seen in vertebral vBMD and trabecular architecture
in female mice were lost in sitagliptin-treated OVX female
mice, suggesting that partial DPP-4 inhibition does not
offset the adverse skeletal effects arising from a marked
decline in estrogen production. The beneficial effects seen

with sitagliptin treatment in female mice were not seen in
male mice.

Interestingly, BSE analysis of total and trabecular bone
area mineralization profiles revealed significant shifts to-
ward increased mineralization for all sitagliptin-treated
mice, independent of gender or OVX. These increases sug-
gest that inhibition of DPP-4 activity reduces the resorp-
tive rate of bone. GLP-2 administration has been associ-
ated with an acute suppression in bone resorption based
on bone marker evaluation (49). Suppressed bone resorp-
tion could allow more time for secondary mineralization
to occur, resulting in a more mineralized bone. Another
explanation for increased mineralization could be im-
proved calcium deposition on bone, which may be linked
to GIP action (39). Taken together, sitagliptin treatment
appears to have a neutral effect on femoral bone mechan-
ics in mice with only modest effects on vertebral bone
mechanics. Because we cannot completely exclude the
possibility that sitagliptin may exert effects on bone inde-
pendent of its inhibition of DPP-4 catalytic activity, attri-
bution of these results to the DPP-4-inhibitory properties
of sitagliptin will require additional studies using chemi-
cally distinct DPP-4 inhibitors.

Effects of genetic inactivation of DPP-4 on bone
quality

Sitagliptin treatment reduces but does not completely
abrogate DPP-4 activity; hence, we assessed bone quality
in mice with complete genetic disruption of the Dpp4 gene
to identify a potential skeletal role for the transmembrane
or soluble forms of DPP-4. Because Dpp4�/� mice are
resistant to HFD-induced obesity (50), we studied
Dpp4�/� mice fed a regular chow diet to avoid the con-
founding effects of differential weight gain in the analysis
of bone quality. Genetic inactivation of Dpp4 results in
modest defects in bone quality in male and female mice.
Male Dpp4�/� mice exhibited significantly reduced ulti-
mate load, Tb.Th. and mineral apposition rate, whereas
female Dpp4�/� mice exhibited significantly reduced

TABLE 7. Geometrical properties of right femora for Dpp4�/� (KO) and WT mice

Male Female OVX

WT KO WT KO WT KO

n 15 23 14 18 10 13
A-P diameter (mm) 1.38 � 0.02 1.42 � 0.02 1.35 � 0.01 1.36 � 0.01 1.39 � 0.01 1.33 � 0.01a

Moment of inertia
(mm4)

0.173 � 0.011 0.177 � 0.007 0.141 � 0.004 0.147 � 0.005 0.155 � 0.007 0.120 � 0.003a

Cross-sectional bone
area (mm2)

0.895 � 0.022 0.877 � 0.016 0.849 � 0.017 0.847 � 0.016 0.808 � 0.028 0.688 � 0.016a

Cortical thickness (mm) 0.173 � 0.009 0.166 � 0.003 0.182 � 0.003 0.183 � 0.003 0.167 � 0.005 0.151 � 0.004a

Values reported as mean � SE. WT, Wild type; KO, knockout; A-P, anterior-posterior.
a Significant (P � 0.05) compared with wild-type control.
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Tb.N. and length of node-free strut (a measure of connec-
tivity) but exhibited a significantly increased vertebral
Young’s modulus. It is important to note that the skeletal
changes seen in male and female Dpp4�/� mice were quite
modest, given the wide range of tests performed to quan-
tify bone quality. The majority of analyses found no sig-
nificant differences comparing male and female Dpp4�/�

vs. Dpp4�/� mice, demonstrating that genetic inactivation
of Dpp4 does not produce a striking bone phenotype in
normal mice.

On the other hand, Dpp4�/� OVX mice exhibited re-
ductions in femoral geometry and femoral structural prop-
erties. The interpretation of these data is complicated by
the observation that Dpp4�/� mice gain less weight after
OVX relative to their Dpp4�/� littermate controls.
Weight gain is an undesirable and complicating effect of
OVX in rodent models because it provides partial protec-
tion against OVX-induced bone loss (51). Interestingly,
the positive effects of sitagliptin treatment on bone quality
in female mice were lost in sitagliptin-treated OVX mice,
and sitagliptin treatment was associated with less weight
gain compared with non-sitagliptin-treated OVX con-
trols. Hence, the effects of DPP-4 inhibition on prevention
of weight gain may partially offset the positive effects of
DPP-4 inhibition on potentiation of gut hormone action in
a postmenopausal estrogen-deficient model.

The motivation for examining the effects of DPP-4 in-
hibition on the skeleton was partly based on studies that
suggested positive skeletal effects from gut hormones that
are also DPP-4 substrates, principally GIP, GLP-1, GLP-2,
and peptide YY. Nevertheless, the anabolic and antire-
sorptive effects of gut hormones have usually been dem-
onstrated in studies administering pharmacological doses
of gut hormones (49), whereas DPP-4 inhibition and ge-
netic inactivation of Dpp4 would be expected to produce
only modest changes in the levels of active gut hormones.
Direct comparison of the phenotypes arising in mice
treated with sitagliptin vs. Dpp4�/� mice is difficult for
several reasons. First, sitagliptin-treated mice were studied
on a HFD known to produce multiple changes in insulin
secretion, insulin action, and levels of circulating adi-
pokines, independent metabolic parameters that may
also influence bone quality. Furthermore, sitgaliptin
produces partial but incomplete reduction of DPP-4 ac-
tivity, whereas Dpp4�/� mice exhibit complete disrup-
tion of enzyme activity and the potential for compen-
satory changes in related genes and proteins that may
mask a skeletal phenotype. Nevertheless, mice sub-
jected to DPP-4 inhibition with sitagliptin and Dpp4�/�

mice exhibit only modest skeletal phenotypes, notably
increasing mineralization and skeletal effects that are
reduced in females after OVX.

In summary, pioglitazone negatively affects trabecular
bone mechanics in male and female wild-type mice and in
estrogen-deficient OVX mice, whereas sitagliptin pro-
duces very few changes in bone quality. Although TZDs
also increase fracture risk in human subjects, it is difficult
to extrapolate results obtained with sitagliptin in studies
of rodent bone quality to human subjects due to species-
specific differences in skeletal and gut hormone biology.
For example, although both Gipr�/� and Glp1r�/� mice
exhibit skeletal phenotypes, and exogenous administra-
tion of GIP and GLP-1 reduce bone resorption in rodents,
acute administration of GIP or GLP-1 has no effect on
markers of bone turnover in human subjects (39, 47–49,
52, 53). Nevertheless, because T2DM is a chronic disease
associated with reduced bone quality and an increased risk
of bone fractures, additional studies examining the effects
of antidiabetic agents potentiating incretin action on bone
formation, quality, and resorption are clearly warranted.
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