
















analysis revealed internal deletion of exons 6 and 7 (long)
or exons 6-12 (short), both of which encode a putative
186-amino-acid carboxyl-terminal truncated GLP-1R
protein. Transfection of the cloned Glp1r�/� cDNA into

BHK fibroblasts, followed by Western blot analysis using
the anti-His antisera revealed a protein of less than 30
kDa, consistent with the Glp1r�/� cDNA sequence (Fig. 7,
A and C). Hence, this much smaller GLP-1R-immunore-
active protein should be easily distinguished from the
larger authentic GLP-1R when Glp1r�/� tissue extracts
are used as controls in Western blot analyses.

Discussion

The available preclinical data demonstrate that GLP-1R
agonists attenuate atherosclerosis progression (4). Con-
tinuous exendin-4 administration for 4 wk to young nor-
moglycemic ApoE�/� mice fed standard rodent chow re-
duced macrophage adhesion to endothelial cells and aortic
plaque and significantly decreased plaque area in the aor-
tic sinus (7). Similarly, continuous administration of na-
tive GLP-1(7-36)amide for 4 wk reduced macrophage ac-
cumulation and aortic lesion size in young nondiabetic
ApoE�/� mice, through mechanisms sensitive to the
GLP-1R antagonist exendin(9-39) (10). Comparable an-
tiatherogenic actions have been observed after adminis-
tration of DPP-4 inhibitors to ApoE�/� mice, findings at-
tributable to antiinflammatory actions of GLP-1R
signaling in macrophages and endothelial cells (8, 33).

In contrast, our findings in high-fat-fed STZ-treated
ApoE�/� mice differ substantially from previous reports
in that we failed to detect evidence for GLP-1R-dependent
reduction of lesion size in the thoracic or abdominal aorta.
The lack of antiatherogenic activity in our studies may
reflect the longer duration of treatment, the dose of ta-
spoglutide used, the older age of mice, or the greater degree
of hyperglycemia obtained after the combination of high-
fat feeding and STZ. We intentionally selected doses of
metformin and taspoglutide that produced glucoregula-
tory actions without producing substantial effects on food
intake and body weight loss. It seems likely that treatment
of mice with higher doses of these agents, leading to more
profound weight loss, might enhance the antiatherogenic
properties of antidiabetic agents. Nevertheless, our nega-
tive findings suggest that sustained GLP-1R activation, at
levels sufficient to control blood glucose, does not univer-
sally lead to reduction of experimental atherosclerosis,
and more work is clearly needed to understand the con-
ditions and dose-response relationships required for cou-
pling of GLP-1R activation to reduction of aortic plaque.

An equally unexpected finding was the lack of effect of
taspoglutide on macrophage accumulation in the thoracic
or abdominal aorta in ApoE�/� mice. The inflammatory
state and migratory capacity of macrophages may be in-
fluenced by ambient levels of glucose, insulin, and free
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FIG. 7. A, Schematic representation of the Glp1r transcripts cloned
from Glp1r�/� mouse tissue. Numbers 1-13 designate exons. The
location of the translation start site (ATG, position �11) and stop
codon are indicated for both the Glp1r�/� transcript and for the two
Glp1r�/� cDNAs identified. The arrowheads mark the approximate
position of the primers used for RT-PCR from lung and intestine RNA.
The predicted size of the long and short Glp1r �/� cDNAs as well as
the size of their encoded proteins are also indicated. B, Nucleotide
sequence around the junction of exons 5 and 8 and exons 5 and 13 as
observed in the long and short Glp1r�/� transcripts, respectively.
Underlined is the codon where the predicted amino acid reading frame
of each Glp1r�/� transcript is shifted, which creates an in-frame stop
codon generating a carboxyl-terminal truncated GLP-1R protein. C,
BHK cells were transiently transfected with the vector pcDNA3.1/myc-
His alone (lane 1) or with the murine Glp1r�/� (lane 2) or Glp1r�/�

long (lane 3) cDNAs cloned into pcDNA3.1/myc-His. Whole-cell
extracts (500 �g protein) were immunoprecipitated with Sepharose-
conjugated anti-Myc-Tag antibody, and the immune complexes were
analyzed by Western blotting using anti-His-Tag antiserum.
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fatty acids (5), and changes in these parameters in our
diabetic ApoE�/� mice may have contributed to the failure
of GLP-1R agonists to reduce macrophage adhesion to the
aortic plaque or endothelium (11). Considerable evidence
demonstrates that GLP-1R activation reduces lipid accu-
mulation, attenuates endoplasmic reticulum stress, re-
duces macrophage migration, and decreases the expres-
sion of proinflammatory molecules in murine
macrophages (7, 9, 10, 34-36). Nevertheless, we were un-
able to detect expression of the full-length Glp1r mRNA
in peritoneal or adipose tissue macrophages isolated under
various conditions from mice of multiple different genetic
backgrounds. The majority of published studies assessing
Glp1r mRNA expression in various cells and tissues such
as macrophages rely predominantly on real-time PCR,
which is highly sensitive but less specific relative to the
detection of full-length Glp1r mRNA transcripts using
techniques such as regular PCR and primers that enable
detection of the entire GLP-1R coding sequence. Hence,
although GLP-1R activation may indirectly control mac-
rophage activation or migration, our data raise uncer-
tainty about the direct actions of GLP-1R agonists on mu-
rine macrophages.

Characterization of several antisera commonly used to
detect immunoreactive GLP-1R protein reveals that these
antisera are not sufficiently sensitive to detect the native
GLP-1R protein in cells or tissues using conditions routinely
used for Western blot analysis. We selected lung extracts as
a positive control for these experiments, because Glp1r ex-
pression has been reported to be relatively abundant in lung
(Fig. 6) compared with other tissues (37). Furthermore, we
were similarly unable to detect the GLP-1R protein with
three different antisera in cells transfected with the GLP-1R
cDNA,conditions favoringrobustexpressionof theGLP-1R
that is normally expressed at much lower levels in endoge-
nous cells and tissues. Our experiments reveal that each of
these antisera detect a number of nonspecific bands (evident
in extracts from Glp1r�/� mice and cells transfected with the
control pcDNA3.1/myc-His plasmid alone) of similar mo-
lecular size to the predicted immunoreactive GLP-1R. These
findings raise a note of caution about interpretation of data
generated using these antisera to detect GLP-1R expression
in cell and tissue extracts and reemphasize the importance of
appropriate controls in the interpretation of data obtained
using the antisera.

The use of Glp1r�/� tissues as a control for assessing
the sensitivity and specificity of GLP-1R antisera requires
consideration of the possibility that under some circum-
stances, tissues from Glp1r�/� mice may express a smaller
nonfunctional GLP-1R-immunoreactive protein that ex-
hibits a molecular mass at least 20 kDa smaller than the
authentic full-length GLP-1R protein (32). We have not

been able to detect specific binding of GLP-1R agonists in
tissues from Glp1r�/� mice (15), and we consistently fail
to detect changes in glucose control, gastric emptying, or
food intake in Glp1r�/� mice treated with potent GLP-1R
agonists (15). It remains unclear whether a smaller trun-
cated GLP-1R-immunoreactive protein potentially pro-
duced in Glp1r�/� mice is successfully transported from
the endoplasmic reticulum to reach the cell membrane or,
alternatively, whether it is subject to enhanced degrada-
tion in cell organelles in tissues of Glp1r�/� mice. Never-
theless, because the molecular size of the GLP-1R-immu-
noreactive protein predicted to be produced in Glp1r�/�

mice is markedly smaller than the authentic GLP-1R, it
should not be difficult to distinguish these proteins by
Western blot analyses. The use of antisera for immuno-
histochemical detection of the GLP-1R is subject to the
same cautions and concerns outlined for Western blot
analyses and requires equally careful use of positive and
negative controls.

Sustained GLP-1R activation reduces hepatic fat accu-
mulation, and increased hepatic lipid oxidation, reduced
lipogenesis, and enhanced lipoprotein secretion have been
invoked as mechanisms contributing to reduced hepatic
steatosis (27, 38-42). Chronic GLP-1R activation reduces
hepatic very-low-density lipoprotein production in high-
fat-fed mice (43), and acute intracerebroventricular ad-
ministration of GLP-1 during hyperinsulinemic-euglyce-
mic clamp experiments rapidly reduced hepatic
triglyceride content in high-fat-fed mice (30). Neverthe-
less, we observed that acute exendin-4 administration via
the intracerebroventricular or peripheral routes actually
reduced triglyceride secretion into plasma of fasted mice,
consistent with GLP-1R-dependent inhibition of hepatic
lipid secretion. Our findings are in agreement with studies
in high-fat-fed mice chronically infused with intracerebro-
ventricular GLP-1 for 2 wk that also exhibited reduced
plasma triglyceride levels under hyperinsulinemic-eugly-
cemic conditions (44). Hence, GLP-1R activation is un-
likely to reduce hepatic fat accumulation by promoting
enhanced very-low-density lipoprotein secretion.

Review of changes in hepatic gene expression in
ApoE�/� mice suggests that taspoglutide treatment de-
creases hepatic lipid storage via the stimulation of lipid
clearance. The increase in mRNA transcripts for Lxr and
Lxr-regulated genes Abca1, Abcg1, Abcg5, and Abcg8
might contribute to the decrease in hepatic cholesterol
content by increasing reverse cholesterol transport and
excretion in bile in taspoglutide-treated mice. Further-
more, the increase in hepatic lipase and Cpt1a expression
suggests an increased ratio of fatty acids targeted toward
�-oxidation rather than triglyceride storage, consistent
with previous findings (40, 45), whereas the decrease in
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fatty acid transporters likely results in reduced hepatic
fatty acid uptake and hepatocyte triglyceride storage. Al-
though mechanisms through which GLP-1R activation
controls hepatocyte lipid pathways and LXR remain un-
clear, one candidate may be insulin. Taspoglutide treat-
ment increased basal insulin levels, and GLP-1R agonists
may also enhance insulin sensitivity indirectly through
weight loss.As insulinactivates theLXRpathway (46), the
role of insulin as a downstream target for the effects of
GLP-1R agonists on hepatic lipid metabolism requires fur-
ther investigation. Alternatively, GLP-1R agonists may
also control hepatic lipid metabolism indirectly via re-
duced production of intestinal lipoproteins or changes in
glucagon levels or via neuronal circuits, and the potential
contributions of these mechanisms to GLP-1R-dependent
reduction of hepatic fat require further investigation.

Nevertheless, despite experiments invoking a direct
role for GLP-1R agonists on liver cells, Glp1r expression
in hepatocytes remains controversial. Glp1r mRNA tran-
scripts have been detected in human liver (38) by RT-PCR
and an immunoreactive GLP-1R protein was detected in
murine, rat, and human hepatocytes by Western blotting
(31, 38, 41, 45). In contrast, other investigators have failed
to detect mRNA transcripts encoding a full-length Glp1r
in human, rat, or mouse liver (17, 37, 47-49), and we
previously reported the absence of cAMP accumulation in
response to GLP-1 or exendin-4 in isolated murine hepa-
tocytes (17). Our current PCR analysis using primers that
span nearly the entire Glp1r coding region failed to detect
Glp1r expression in isolated murine hepatocytes, whereas
the faint transcript in RNA isolated from whole liver is
consistent with a signal emanating from blood vessels, bile
ducts, neurons, or infiltrating immune cells within the
liver. Hence, the reduction in liver fat in mice treated with
GLP-1R agonists is not explained by a direct effect of
GLP-1R signaling in hepatocytes.

In summary, our results raise several questions sur-
rounding GLP-1 action, atherosclerosis, and hepatic fat
accumulation. Our findings fail to demonstrate attenua-
tion of atherosclerosis in either the thoracic or abdominal
aorta of diabetic ApoE�/� mice. Furthermore, we did not
observe reduced macrophage accumulation in the aorta
after sustained GLP-1R activation, and we were unable to
detect Glp1r mRNA transcripts in macrophages or hepa-
tocytes, despite previous reports localizing the GLP-1R to
these two cell types. Importantly, our findings reveal sub-
stantial problems with the sensitivity and specificity of
multiple GLP-1R antisera commonly used for the detec-
tion of the GLP-1R in various tissues. Taken together, our
findings emphasize the importance of additional experi-
mentation to identify mechanisms and conditions linking
GLP-1R activation to the control of macrophage migra-

tion, hepatocyte lipid metabolism, and ectopic lipid
deposition.
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Supplementary Figure 1  Experimental timelines for analysis of atherosclerosis in ApoE-/- mice 
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Supplementary Figure 2. Plasma and stool lipid levels in diabetic male ApoE-/- mice. 
 (A) Blood pressure (B) Plasma triglyceride levels measured after oral olive oil 
administration in di�erent groups of ApoE-/- mice. Fasting (6-hour) plasma levels of
 (C) cholesterol and (D) triglycerides after 11 weeks of treatment and  levels of excreted 
cholesterol (E) and triglycerides (F) in stool from di�erent groups of ApoE-/- mice. 
Analysis of lipid tolerance graph was made by two-way ANOVA and AUC by one-way 
ANOVA. 



Supplementary Figure 3. Histological indices of liver injury in diabetic ApoE-/- mice after 12 weeks of 
treatment. Analysis of NAFLD activity scores (NAS) for hepatic lobular inflammation, ballooning, apoptosis, 
Kupffer cells, fibrosis and steatosis were assessed by a pathologist blinded to the study. D PBO= diabetic 
placebo, D Met PBO = diabetic mice treated with metformin and a “placebo” microtablet and D Taspo = 
diabetic mice treated with taspoglutide. 
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Diabetic PBO 
                                 

Diabetic Taspo Diabetic Met 

Average SEM Average SEM Fold over 
PBO 

p value 
vs D PBO 

Average SEM Fold over 
PBO 

p value 
vs D PBO 

p value 
vs taspo 

Transcription factors 

Foxa2 2.74 + 0.26         2.82  + 0.44 1.03 0.7965 2.30 + 0.15 0.84 0.0415 0.2936 

SREBP1 2.85 + 0.51         3.17  + 0.32 1.11 0.7063 3.09 + 0.64 1.08 0.8699 0.9075 

srebp2 1.03 + 0.12         0.98  + 0.10 0.95 0.8843 1.05 + 0.16 1.02 0.8163 0.7158 

PPARa 1.27 + 0.14         1.31  + 0.17 1.03 0.8239 1.57 + 0.26 1.24 0.5503 0.4256 

Beta oxidation 

ACoAOxidase 1.89 + 0.16         1.77  + 0.13 0.93 0.5511 2.49 + 0.32 1.31 0.2000 0.0729 

Cpt2 7.23 + 0.60         7.18  + 0.38 0.99 0.6691 8.33 + 0.92 1.15 0.5150 0.2822 

Lipid uptake 

FATP2 9.18 + 1.77         8.66  + 1.14 0.94 0.8101 10.39 + 1.18 1.13 0.5844 0.3201 

FABP5 1.30 + 0.13         1.48  + 0.25 1.14 0.5490 1.31 + 0.11 1.00 0.9866 0.5459 

CD36 2.32 + 0.18         2.33  + 0.19 1.00 0.9761 2.38 + 0.21 1.03 0.8361 0.8601 

LDLR 1.36 + 0.12         1.39  + 0.15 1.02 0.8837 1.43 + 0.22 1.05 0.8091 0.9018 

Lipoprotein assembly 

DGAT1 3.17 + 0.15         2.58  + 0.22 0.81 0.0557 2.85 + 0.15 0.90 0.1717 0.3244 

DGAT2 4.86 + 0.43         4.85  + 0.49 1.00 0.9968 5.04 + 0.69 1.04 0.8299 0.8332 

MTTP 2.75 + 0.22         2.63  + 0.24 0.96 0.7197 2.71 + 0.28 0.99 0.9274 0.8207 

LPL 2.00 + 0.21         2.69  + 0.51 1.35 0.2394 2.09 + 0.15 1.05 0.7143 0.2900 

ApoA5 1.18 + 0.18         1.06  + 0.05 0.90 0.5254 1.34 + 0.14 1.13 0.5006 0.0939 

ApoB 7.13 + 0.43         6.56  + 0.45 0.92 0.3787 7.34 + 0.50 1.03 0.7571 0.2723 

ApoC3 6.89 + 0.47         6.16  + 0.51 0.89 0.3238 6.44 + 0.44 0.93 0.5026 0.6939 

Cholesterol and bile acid synthesis 

HMGCoAR 6.70 + 0.82         5.56  + 0.99 0.83 0.7015 5.46 + 0.93 0.82 0.6439 0.9457 

Cyp7a1 1.56 + 0.09         1.82  + 0.38 1.16 0.5820 1.63 + 0.42 1.04 0.9452 0.7414 

Supplementary Table 1 Gene expression in liver of diabetic ApoE-/- mice 

cDNA preparation and real time PCR analysis were performed as described in methods from whole liver samples taken from 

random fed diabetic ApoE-/- mice . Data are mean + SEM, n=5. Diabetic PBO=diabetic ApoE-/- mice treated with placebo; 

Diabetic Taspo = mice treated with taspoglutide and Diabetic Met = mice treated with metformin, all for 12 weeks. 



Supplementary Table 2 

 

Primers used for Real Time PCR experiments described in Figure 5 and Supplementary Table 1 

 

Figure 5 

lxr Mm00437262_m1 

abca1 Mm00442646_m1 

abcg1 Mm00437390_m1 

abcg5 Mm00446241_m1 

abcg8 Mm00445970_m1 

lrp Mm00464608_m1 

SR mm00450234 

lipc Mm00433975_m1  

cpt1a Mm01231183_m1 

fabp2 Mm00433188 

fatp5 Mm00447768_m1 

fabp1 Mm00444340_m1 

perilippin Mm00558672_m1 

  

  

Supplemental Table 1 

foxa2 Mm01976556 

srebp1 Mm00550338_m1 

srebp2 Mm01306292_m1 

ppara Mm00627559 

acoaoxidase Mm00443579 

cpt2 Mm00487205_m1 

fatp2 Mm00449517_m1 

fabp5 Mm00783731 

cd36 Mm00432403 

ldlr Mm00440169_m1 

dgat1 Mm00515643_m1 

dgat2 Mm01273905_m1 

mttp Mm00435015 

lpl Mm00434770 

apoa5 Mm00475480 

apob Mm01545059 

apoc3 Mm00445670 

hmgcoar Mm01282499  

cyp7a1 Mm00484152_m1 


