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Protein Engineering Strategies for Sustained
Glucagon-Like Peptide-1 Receptor—Dependent Control of

Glucose Homeostasis
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OBJECTIVE—We have developed a novel platform for display
and delivery of bioactive peptides that links the biological
properties of the peptide to the pharmacokinetic properties of an
antibody. Peptides engineered in the MIMETIBODY platform
have improved biochemical and biophysical properties that are
quite distinct from those of Fc-fusion proteins. CNTO736 is a
glucagon-like peptide 1 (GLP-1) receptor agonist engineered in
our MIMETIBODY platform. It retains many activities of native
GLP-1 yet has a significantly enhanced pharmacokinetic profile.
Our goal was to develop a long-acting GLP-1 receptor agonist
with sustained efficacy.

RESEARCH DESIGN AND METHODS—In vitro and in vivo
activity of CNTO736 was evaluated using a variety of rodent cell
lines and diabetic animal models.

RESULTS—Acute pharmacodynamic studies in diabetic rodents
demonstrate that CNTO736 reduces fasting and postprandial
glucose, decreases gastric emptying, and inhibits food intake in a
GLP-1 receptor-specific manner. Reduction of food intake fol-
lowing CNTO736 dosing is coincident with detection of the
molecule in the circumventricular organs of the brain and
activation of c-fos in regions protected by the blood-brain barrier.
Diabetic rodents dosed chronically with CNTO736 have lower
fasting and postprandial glucose and reduced body weight.

CONCLUSIONS—Taken together, our data demonstrate that
CNTO736 produces a spectrum of GLP-1 receptor—dependent
actions while exhibiting significantly improved pharmacokinetics
relative to the native GLP-1 peptide. Diabetes 57:1926-1934,
2008

rug development strategies for therapeutic pep-
tides continue to be challenging despite ad-
vances in technologies such as pegylation and
lipidation (1-4). Although important biological
processes are regulated by peptides, successful develop-
ment of peptide drugs has been limited and transformation
of a metabolically labile peptide into a drug remains
challenging. In contrast, considerable advances have been
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made in the development of antibody therapeutics (5,6). A
technology that could link the activity of a target peptide
with the pharmacokinetic characteristics of an antibody
would be a valuable addition to tools available for drug
discovery. To address this need, we developed the MI-
METIBODY platform as a novel technology for the display
and delivery of bioactive peptides. Using protein design
tools, we linked an antibody Fc domain to a bioactive
glucagon-like peptide 1 (GLP-1) analog and engineered
the construct for optimal biochemical and biophysical
properties.

GLP-1 is a 30—amino acid peptide secreted from L-cells
of the intestine following nutrient ingestion (7-10). GLP-1
is rapidly degraded in vivo with a half-life of <2 min and
cleared via the kidney (11,12). When circulating glucose
concentrations are elevated, GLP-1 increases insulin and
decreases glucagon secretion from the pancreas and slows
gastric emptying, thereby reducing glucose appearance in
the circulation and enhancing glucose clearance from the
circulation (13-15). In rodent models, GLP-1 expands
B-cell mass via induction of 3-cell proliferation and neo-
genesis and reduction of B-cell apoptosis (16-20). The
cytoprotective actions of GLP-1 also promote survival of
human islets (21,22). Furthermore, GLP-1 reduces food
intake, and therapy with GLP-1 receptor agonists has been
associated with weight loss in clinical studies (23,24).
Thus, GLP-1 receptor agonists are attractive therapeutic
candidates for the treatment of type 2 diabetes.

CNTO736 is a GLP-1 receptor agonist engineered in our
MIMETIBODY platform that incorporates a GLP-1 peptide
analogue genetically fused to a domain that includes the
Fc portion of an antibody (25,26). In addition to an amino
acid substitution in the peptide rendering it resistant to
dipeptidyl peptidase IV (27,28), the increased molecular
weight and pharmacokinetic properties of an Fc were
expected to enable sustained delivery of a GLP-1 receptor
agonist. We demonstrate that CNTO736 dose-dependently
increases cAMP and insulin secretion from islets in a
glucose-dependent manner. In rodent models of type 2
diabetes, acute dosing with CNTO736 lowers fasting and
postprandial blood glucose with a significantly longer
duration of action than native GLP-1, and chronic dosing
with CNTO736 decreases body weight. Although CNTO736
is a large molecule that is not likely to efficiently cross the
blood-brain barrier, it can be detected in the circumven-
tricular organs of the brain following peripheral dosing,
and c-fos expression is detected in regions that are pro-
tected by the blood-brain barrier. Food intake is reduced
in mice and rats following peripheral dosing with
CNTO736, correlating with the appearance of the molecule
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FIG. 1. CNTO736 has improved activity relative to constructs lacking a linker. A: The schematic outlines the structure of CNTO736 including the
CH2 and CH3 domains of the Fc, the hinge including the disulfide bonds, a linker containing a partial VH region, and two GLP-1 peptides. The
amino acid sequence of CNTO736 beginning at the NH,-terminus is as follows: HSEGTFTSDVSSYLEGQAAKEFIAWLVKGRGGGSGGGSGTLVT
VSSESKYGPPCPPCPAPEAA. .. Fc B. The concentration of cAMP was measured in INS-1E cells after addition of increasing concentrations of
CNTO736 or a molecule lacking the hinge. The fit to the CNTO736 data provided an EC;, of 1.8 nmol/l. C: Fasted mice (DIO, n = 5) were dosed
intravenously with vehicle (ll), CNTO736 (0.5 mg/kg) ( ¢), or a construct lacking a hinge (0.5 mg/kg) (O) 10 min before an ipGTT. The results

are presented as the means * SE (n = 5).

in the hypothalamus. Hence, the generation of stable
bioactive peptide therapeutics with optimized pharmaco-
kinetic properties may provide a new option for the
treatment of metabolic disorders.

RESEARCH DESIGN AND METHODS

Animal studies. All animal studies were performed according to the National
Research Council’s Guide for the Care and Use of Laboratory Animals and
were approved by the internal institutional animal care and use committee.
db/db mice were purchased from The Jackson Laboratories. For diet-induced
obesity (DIO) mice experiments, C57BL/6J mice were maintained on a diet
containing 60.9% kcal from fat from 4 weeks of age, and all animals achieved
3 consecutive weeks of diabetic fasting blood glucose (FBG) values (>120
mg/dl).

Expression and purification of CNTO736. CNTO736 was constructed by
fusing a GLP-1 peptide analogue to a flexible Gly/Ser linker and a fragment of
a V region heavy chain (VH) domain linked directly to the CH2 and CH3
domains of an Fc. The amino acid sequence is shown in Fig. 1A. Genes
encoding CNTO736 or CNTO1996, a negative control molecule that lacks a
GLP-1 segment, were cloned into a vector for mammalian expression under
control of the cytomegalovirus promoter. For transient expression, HEK 293E
cells were expanded (Dulbecco’s modified Eagle’s medium [Invitrogen] + 10%
fetal bovine serum) and used to seed a 10-tier cell factory (5 X 107 cells in
growth medium [1,200 ml]). Twenty-four hours later, the cells were trans-
fected. The transfection mix was replaced with 293-SFMII medium (Invitro-
gen) with 5 mmol/l sodium butyrate (1,200 ml) after 24 h. Four days later, the
conditioned medium was harvested, filtered, and stored at 4°C. CNTO736
was purified using a Protein A MabSelect column (GE Healthcare) and
Immunopure Gentle Ag/Ab binding and elution buffers (Pierce). The purified
product was dialyzed into 20 mmol/l Tris, pH 7.4. The final column was a
Superdex 200 column (GE Healthcare) in PBS. Selected fractions were pooled
and concentrated.
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Cells and islets. INS-1E cells were kindly provided by C.B. Wollheim. Human
and Sprague-Dawley rat islets were isolated using an enzymatic digestion and
density gradient purification as described (29).

cAMP. INS-1E cells were plated in 96-well plates (1 X 10° cells/well) in
RPMI-1640 (Invitrogen) containing fetal bovine serum (10%), L-glutamine (1%),
sodium pyruvate (1%), nonessential amino acids (1%), and B-mercaptoethanol
(50 pmol/). The cells recovered for 4 days at 37°C with 5% CO,. Media was
aspirated from the wells, and 24 pl of Alexa Fluor 647 anti-cAMP antibody
(LANCE cAMP Kit; Perkin Elmer) was added followed by 24 pl of CNTO736
or a construct lacking a linker (in PBS/0.5% BSA/0.5 mmol/l isobutylmethyl-
xanthine). The cells were stimulated at room temperature for 7 min and lysed
per the manufacture’s protocol (Perkin Elmer). The plates were incubated at
room temperature for 1 h, and the fluorescence intensity was measured at 665
nm. cAMP concentrations were determined using a standard curve.

Insulin secretion from rat or human islets. Islets were suspended at a
density of 20 islets/ml in functionality/viability media (MediaTech) containing
BSA (1%), L-glutamine (1%), penicillin/streptomycin (1%), and glucose (0.5
mmol/l). Approximately 20 islets were added to each well of a 24-well plate
and incubated at 37°C in 5% CO,. After 2 h, functionality/viability media
containing BSA (1%), L-glutamine (1%), penicillin/streptomycin (1%), CNTO736
(50 nmol/l), and glucose (3.5 or 15 mmol/l) was added. Supernatant was
collected at baseline and after 4 h and was stored at —20°C. Rat insulin was
quantitated using an ultrasensitive enzyme-linked immunosorbent assay
(ELISA) (Crystal Chem), and human insulin was quantitated by ELISA (Linco
Research).

Pharmacokinetics of CNTO736 in mice. C57BL/6 mice were dosed intra-
venously with CNTO736 (1 mg/kg) or GLP-1 peptide (0.062 mg/kg; Sigma). At
various times, three animals were Killed and blood was collected via cardiac
puncture in 3.8% sodium citrate containing protease inhibitors (Roche Com-
plete EDTA free; Roche Applied Science). Plasma was isolated and stored at
—80°C. The concentration of intact CNTO736 was measured using a modified
form of a purchased ELISA designed to detect intact GLP-1 (Linco). Briefly,
CNTO736 was captured as described in the protocol, but a goat anti-human H
+ L alk-phos conjugate (Jackson Immunoresearch) was used to detect intact
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FIG. 2. CNTO736 induces glucose-dependent insulin secretion. Rat islets (4) or human islets (B) were incubated with CNTO736 (50 nmol/l) in
the presence of low or high glucose, and the concentration of secreted insulin was measured after 4 h.

CNTO736. Fluorescence was read and the data analyzed with Softmax-Pro
(Molecular Devices).

Intraperitoneal insulin glucose test in DIO mice. Male DIO mice were
randomized (n = 5) based on FBG. Mice were dosed intravenously with
CNTO736, the negative control lacking the GLP-1 peptide, or PBS 10 min
before an intraperitoneal glucose tolerance test (ipGTT).

ipGTT and food intake in GLP-1 receptor knockout mice. Fasted male
GLP-1 receptor knockout mice (rn = 5) (30) and C57BL/6 age-matched
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controls (n = 6) were dosed intravenously with CNTO736 (1 mg/kg) or a
negative control lacking the GLP-1 peptide. An ipGTT was done 30 min after
dosing. In a separate study, fasted male GLP-1 receptor knockout mice (n =
5) and C57BL/6 age-matched controls (n = 6) were dosed subcutaneously
with CNTO736 (1 mg/kg) or a negative control lacking the GLP-1 peptide, and
food intake was measured over the next 24 h.

Gastric emptying in wild-type mice. Mice (n = 5) were fasted overnight
(16-18 h), and fed preweighed food in the morning. After 1 h of refeeding, the
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FIG. 3. CNTO736 improves glucose tolerance in normal and DIO mice but not GLP-1 receptor knockout mice. A: Fasted mice (DIO, n = 5) were
dosed intravenously with CNTO736 [0.02 (H) and 0.1 (®) mg/kg] or the negative control lacking the GLP-1 peptide (O) 10 min before an ipGTT.
B: Fasted mice (C57BL/6, n = 6) were dosed intravenously with CNT0736 (1 mg/kg) ([]) or the negative control (1 mg/kg) (®) 30 min before an
ipGTT. C: Fasted mice (GLP-1 receptor knockout, n = 5) were dosed intravenously with CNT0O736 (1 mg/kg) ([J]) or control (1 mg/kg) (®) 30 min

before an ipGTT. The results are presented as the means = SE (n = 5).
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FIG. 4. CNTO736 decreases food intake and delays gastric emptying. A:
Fasted GLP-1 receptor knockout (n = 5) (H) or C57BL/6 mice (n = 6)
() were dosed subcutaneously with CNTO736 (1 mg/kg) or a negative
control (1 mg/kg). Food intake was monitored over 24 h. The results
are presented as the means = SE (n = 5). *P value <0.05. B: Fasted
mice (n = 5) were given a preweighed meal and the amount of food
consumed in 1 h was measured. The mice were dosed intravenously
with CNTO736 (2.4 mg/kg) or vehicle and were killed after 4 h. The wet
weight of the stomach contents was measured to determine what
percent of the food remained in the stomach as an estimate of gastric
emptying. The results are presented as means = SE (n = 10). *P value
<0.05.

remaining food was weighed for measurement of food intake, and mice were
dosed intravenously with CNTO736 (2.4 mg/kg) or PBS (31). The animals were
deprived of food for the remainder of the study. Four hours postdosing, the
stomach was exposed by laparotomy, quickly ligated at both the pylorus and
cardia, and removed. The wet weight of the stomach content was determined,
and the amount of food retained in the stomach was calculated.

Immunohistochemistry of anti-human IgG in brain sections of rats.
Sprague-Dawley rats (n = 3) were fasted for 24 h and dosed intravenously
with PBS or CNTO736 (1 mg/kg) just before the dark cycle. After 30 min, 2 h,
and 6 h, food and water intake measurements were recorded and rats were
anesthetized with pentobarbital. Transcardial perfusion included PBS fol-
lowed by paraformaldehyde (PFA) (4%) with sucrose. Following decapitation,
rat skulls were stored overnight in PFA (4%) at 4°C. Brains were dissected,
stored in PBS, and shipped to NeuroScience Associates (Knoxville, TN) for
immunohistochemistry analysis. A multibrain block was prepared using
MultiBrain Technology (NeuroScience Associates), frozen by immersion in
chilled isopentane, and mounted on a freezing stage of an AO 860 sliding
microtome. The MultiBrain block was sectioned coronally at 35 p with
sequential collection into a 4 X 5 array of containers filled with antigen
preserve solution (50% PBS, pH 7.0; 50% ethylene glycol, 1% polyvinyl
pyrrolidone). Sections were stained with anti-human Fc (Jackson ImmunoRe-
search) and anti-c-fos (Calbiochem) reagents for CNTO736 and c-fos, respec-
tively. Antibody binding was visualized using appropriate secondary
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antibodies, avidin—horseradish peroxidase and diaminobenzidine tetrahydro-
chloride with hydrogen peroxide.

Chronic dosing in DIO mice. Male DIO mice (n = 7) were subcutaneously
dosed daily with vehicle or CNTO736 (0.1 and 1 mg/kg) for 6 weeks. FBG was
measured from tail vein blood using a hand-held glucometer (Lifescan) twice
per week. Body weights were measured daily during the 6 weeks of dosing.
Dual-energy X-ray absorptiometry analysis was done at the end of the 6-week
study on the CNTO736 (1 mg/kg) and vehicle-treated groups.

Statistical analysis. All values are presented as the means = SE. Compari-
sons among groups were made using ANOVA followed by unpaired, nonpara-
metric two-tailed Student’s ¢ test. Differences were considered statistically
significant at P < 0.05.

RESULTS

MIMETIBODY engineering. Various constructs were
engineered to balance optimization of GLP-1 activity with
maximal in vivo stability, concentrating the design on the
linker because it is such a critical element. The linker must
be flexible enough to enable effective engagement of the
GLP-1 receptor yet stable enough to maintain in vivo
attachment to the Fc portion of the molecule since it is
responsible for imparting extended pharmacokinetic prop-
erties (Fig. 1A). To illustrate the importance of the linker,
constructs with different linkers were evaluated. One
variant in which the GLP-1 segment was linked directly to
the Fc hinge had improved pharmacokinetic properties
but was linked to significant decreases in receptor activity
(Fig. 1B) and in vivo efficacy (Fig. 1C). The optimal variant,
CNTO736, maintained the bioactivity of GLP-1, while
extending the half life ~1,000-fold compared with GLP-1 in
mice (30 h vs. 1-2 min) (12).

In vitro characterization. CNTO736 increased cAMP
accumulation in INS-1 cells in a dose-dependent manner
with an EC;, of 4.9 £ 2.5 nmol/1 (rn = 6) compared with
0.2 = 0.1 nmol/l (n = 5) for native GLP-1 (Fig. 1B shows
one representative dataset). To directly compare the affin-
ity of CNTO736 and GLP-1 binding to the GLP-1 receptor,
competitive binding experiments using '*’I-labeled GLP-1
demonstrated that binding of CNTO736 to GLP-1 receptor
on INS-1 cells was approximately eightfold weaker than
native GLP-1 (data not shown). Both the cAMP and
binding studies indicate that addition of the hinge and Fc
onto the GLP-1 peptide results in a decreased affinity for
the receptor. Nevertheless, CNTO736 stimulated insulin
secretion from INS-1 cells with an ECy, of 0.03 nmol/l
(data not shown) and enhanced insulin secretion from rat
and human islets in a glucose-dependent manner (Fig. 2A
and B).

ipGTT in DIO mice. The in vivo activity of CNTO736 was
evaluated in an acute study to ascertain whether the
molecule was able to reduce blood glucose levels.
CNTO736 or a negative control lacking the GLP-1 peptide
was dosed intravenously to DIO mice, and an ipGTT was
performed 10 min later. CNTO736 reduced the glucose
excursion in a dose-dependent manner (Fig. 3A4). At 20
png/kg CNTO736, the glucose area under the curve was
reduced >35% relative to control animals, while the glu-
cose area under the curve for mice treated with 100 pg/kg
was reduced by 53%.

ipGTT in wild-type and GLP-1 receptor knockout
mice. To determine whether the glucoregulatory actions
of CNTO736 were GLP-1 receptor dependent, we evalu-
ated the activity of CNTO736 in GLP-1 receptor knockout
(Glplr~'7) mice (30). As previously demonstrated in DIO
mice, wild-type mice dosed with CNTO736 (1 mg/kg) had
significantly reduced -circulating glucose following an
ipGTT (Fig. 3B), while no change in blood glucose was
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FIG. 5. CNTO736 is present in the area of the hypothalamus and circumventricular organs but not in the amygdale following peripheral dosing.
Brain sections from rats (n = 3) dosed intravenously with PBS (4, D, and G), CNTO736 for 2 h (B, E, and H) and CNTO736 for 6 h (C, F, and
I). Brain sections were taken at the level of the median eminence (ME) (A-C), central nucleus of the amygdale (AMYG) (D-F), and area postrema
(AP), including nucleus of the solitary tract (NTS) (G-I). Coronal brain sections were stained with an anti-human IgG antibody to detect the
presence of CNTO736. The images are representative of sections taken from three rats per group. Picture magnification was 4 X for A-C and G-I
and 10x for D-F. Staining in PBS treated animals at 2 and 6 h postinjection were identical. Additional abbreviations include central canal (CC),

third ventricle (3v), and arcuate nucleus (Arc).

observed following CNTO736 administration in Glplr
mice (Fig. 3C). In addition, FBG was reduced significantly
30 min after administration of CNTO736 in wild-type mice
(85 = 13 vs. 120 = 25 mg/dl) but not in Glplr '~ mice
(1566 = 38 vs. 145 = 37 mg/dl).

Food intake in wild-type and GLP-1 receptor knock-
out mice and gastric emptying in wild-type mice.
Treatment with CNTO736 (1 mg/kg) reduced 24-h food
intake by 25% in wild-type, but not in Glplr /"~ , mice (Fig.
4A). In a separate study, gastric emptying was estimated
by weighing stomach contents after mice were given a
preweighed meal. There was a fivefold increase in retained
stomach contents in animals dosed with CNTO736 relative
to control animals (Fig. 4B).

Fc and c-fos immunohistochemistry in brain sections
of wild-type rats. Some actions of small peptidic GLP-1
receptor agonists have been attributed to activation of
central receptors that regulate food intake and satiety. We
anticipated that the molecular weight of CNTO736 would
inhibit its passage across the blood-brain barrier and limit
its ability to regulate food intake. To assess whether
peripherially administered CNTO736 could access central
GLP-1 receptors and directly activate c-fos expression in
the brain, rats were dosed intravenously with CNTO736
and brains were isolated 2 or 6 h after dosing. Brains were
sectioned and stained for the presence of human Fc.
CNTO736 was detected in the median eminence and area
postrema of the nucleus of the solitary tract at both the 2-
and 6-h time points but not in the central nucleus of the
amygdale (Fig. bA-I). However, c-fos expression could be
detected via immunohistochemistry in the central nucleus

1930

of the amygdale as well as in the hypothalamus and area
postrema (Fig. 6A-I). The appearance of CNTO736 in the
median eminence and area postrema and c-fos expression
in the hypothalamus, area postrema, and amygdale corre-
lated with reductions in food and water intake (data not
shown).

Chronic dosing in DIO mice. DIO mice dosed chroni-
cally with CNTO736 demonstrated a dose-dependent re-
duction in FBG (Fig. 7A). In addition, treatment with
CNTO736 over a 6-week period reduced body weight by
7.8 or 19.8% relative to control mice after 6 weeks for the
0.1 or 1 mg/kg doses, respectively (Fig. 7B). Dual-energy
X-ray absorptiometry analysis indicated that the reduction
in body weight was primarily due to a loss of fat mass,
while muscle mass was unchanged (Fig. 7C).

DISCUSSION

Protein therapeutics represent the fastest-growing seg-
ment in the pharmaceutical industry. The increasing suc-
cess rate of antibody therapeutics has fueled an interest in
expanding the utility of protein therapeutics to address
other unmet medical needs (32). Peptides represent a rich
source of therapeutic targets, but unmodified peptides
have not traditionally made good drugs because of their
high rates of metabolism and clearance. A technology that
could couple the desirable pharmacological properties of
antibodies with the bioactivity of small peptides would be
a valuable extension of antibody technology. The MIMETI-
BODY platform was developed to address the gap between
large protein and small peptide molecules. A variety of

DIABETES, VOL. 57, JULY 2008
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FIG. 6. Peripheral treatment of CNTO736 leads to neuronal activation of several brain areas as measured by c-fos immunohistochemical staining.
Brain sections from rats (rn = 3) dosed intravenously with PBS (A, D, and ), CNTO%736 for 2 h (B, E, and H), and CNTO736 for 6 h (C, F, and
I). Brain sections were taken at the level of the hypothalamus (HYPO) (A-C), central nucleus of the amygdale (AMYG) (D-F), area postrema
(AP), and nucleus of the solitary tract (NTS) (G-I). The images are representative of sections taken from three rats per group. Coronal brain
sections were stained with an anti-c-fos antibody. All pictures were taken at a X10 magnification. Staining of PBS-treated animals at 2 and 6 h
postinjection were identical. PVH, paraventricular nucleus of the hypothalamus.

peptides were engineered into the platform to demon-
strate the utility and versatility of the platform. This novel
class of proteins provides a scaffold for display and
delivery of bioactive peptides that is unique from other
fusion protein technologies. The placement of the genetic
fusion and the nature of the linker sequence are critical for
maintenance of peptide activity. During engineering of
CNTO736, we have tested a construct in which the GLP-1
moiety was fused directly to the hinge of the Fc; this
construct exhibited very low activity (Fig. 1B). Similarly,
others (31,33) have reported that fusion of a GLP-1 ana-
logue to an IgG1 Fc or albumin results in nearly 100-fold
lower activity. Thus, optimization of the linker sequence is
an essential component of the MIMETIBODY technology.

We have used our novel MIMETIBODY platform to
engineer a molecule with potential for application to type
2 diabetes. GLP-1 receptor agonists have gained significant
attention because of several attractive properties of the
peptide. GLP-1 stimulates insulin release from B-cells in a
glucose-dependent manner (7,10,34), increases insulin bio-
synthesis in the B-cell (7), regulates gastric emptying
(13-15), inhibits food intake (35-37), and increases -cell
mass in rodents (16,17,19-21). However, GLP-1 itself is not
a desirable therapeutic because of its extremely short in
vivo half-life (7}, = ~1-2 min) (11,12). Our data demon-
strate that CNTO736 maintains the bioactivity properties
of the native hormone while significantly enhancing the
half-life.

CNTO736 is a macromolecule containing two GLP-1
moieties, and our data demonstrate that its activity is
similar to native GLP-1. CNTO736 binds to the GLP-1

DIABETES, VOL. 57, JULY 2008

receptor, induces cAMP production, and increases insulin
secretion in a glucose-dependent manner. CNTO736 also
reduces fasting and postprandial blood glucose and re-
duces A1C after chronic dosing.

One potential concern for any long-lived GLP-1 receptor
agonist is that continual exposure to the peptide could
result in receptor tachyphylaxis. However, continuous
infusion of native GLP-1 in type 2 diabetic patients re-
duced blood glucose equally after 1 or 6 weeks of treat-
ment, indicating that the receptor was present and
accessible throughout treatment (23). A second study
comparing a 16- vs. 24-h GLP-1 infusion in patients indi-
cated that greater efficacy could be achieved with sus-
tained 24-h coverage (38), with no evidence of
tachyphylaxis or loss of activity. Finally, treatment with
exendin-LAR has been reported to reduce A1C as much as
2% in the high-dose group (39). Since the half-life for
exendin-LAR was reported to be 14-15 days, the data
confirms that sustained exposure to a GLP-1 analogue has
potential for profound efficacy. Diabetic mice dosed
chronically with CNTO736 achieved a significant reduction
in FBG, and an oral glucose tolerance test performed at
the end of the study showed no evidence of tachyphylaxis.
Consistent with a prolonged reduction in blood glucose
levels, A1C was significantly lower in mice treated with
CNTO736 compared with vehicle-treated db/db mice (7.2

+ 1.1 vs. 84 + 1.1%, P < 0.05) (data not shown).

A second issue relates to the potential for an immune
response in animals treated with CNTO736 that contains a
human Fc. We anticipated that an immune response could
attenuate the activity of CNTO736 in mouse models. Thus,
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FIG. 7. Chronic CNT0736 dosing improves glucose control and decreases body weight in DIO mice. CNT0736 (0.1 mg/kg) ([J) and (1 mg/kg) (A)
or vehicle (@) was dosed subcutaneously daily for 6 weeks (n = 7). A: Fasting blood glucose. B: Body weight. C: Dual-energy X-ray analysis for
lean and fat mass in the vehicle (ll) and CNTO736 groups (1 mg/kg) ([J). The results are presented as the means = SE (n = 5). *P value <0.05.

although CNTO736 showed prolonged pharmacokinetics
following a single dose in mice, animals were dosed daily
to ensure continuous coverage in chronic experiments.
Despite the likelihood of an anti-human Fc response,
efficacy was maintained in mice dosed chronically with
CNTO736.

A significant component of the observed efficacy in
patients treated with byetta or liraglutide arises from a
reduction in food intake and body weight (24,40-42). Our
data demonstrate that peripheral dosing of CNTO736
decreases food intake and chronic dosing reduces body
weight. It remains unclear whether peripherally or cen-
trally located receptors mediate the GLP-1 effect on food
intake, and we anticipated that the molecular weight of
CNTO736 would preclude its passage across the blood-
brain barrier. Immunohistochemistry was used to test the
hypothesis directly, and CNTO736 was detected only in
brain regions that are readily available to circulation
(circumventricular organs). However, c-fos activation was
observed in the amygdale. Therefore, GLP-1 receptors that
influence food intake are likely located either in the
periphery or in an area of the brain that is exposed to
circulation. Our c-fos activation data are consistent with
previous reports that neurons found in the area postrema
are important for transmitting signals from the periphery
to the central autonomic regulatory system (43).

A major adverse event associated with the incretin
mimetics is nausea. Although the mechanism for nausea is
not well understood, it has been speculated that a delay in
gastric emptying may play a role. Alternatively, it is likely
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that there is a central component to the nausea. Experi-
ments in which GLP-1 was dosed directly into various
regions of rat brains followed by a conditioned taste
aversion test suggest that receptors located in the central
nucleus of the amygdala mediate visceral illness (44). A
significant difference between CNTO736 and many GLP-1
receptor agonists evaluated in the clinic thus far is its size.
Byetta and liraglutide are low-molecular weight peptides
that are likely to cross the blood-brain barrier. Since the
central nucleus of the amygdala is an area of the brain that
is protected by the blood-brain barrier, CNTO736 is unable
to directly activate receptors there following peripheral
dosing. However, c-fos is activated in the amygdale follow-
ing peripheral dosing of CNTO736. Peripheral dosing of
albugon, another large molecule GLP-1 receptor agonist,
also activated c-fos in many areas of the brain that are not
likely to be accessible to large molecules, including the
central nucleus of the amygdala (31). Thus, it is likely that
there is a peripheral mechanism that allows for activation
of receptors in central nervous system centers. Since c-fos
signaling from albugon was less robust than that of
exenatide, it is possible that central and peripheral mech-
anisms act in concert to mediate the complete pharmacol-
ogy of GLP-1. It may be possible to separate the negative
(i.e., nausea) events associated with GLP-1 therapeutics by
minimizing localization in the central nervous system.
Regardless of the predominant mechanism, a correlation
between C,,,. and nausea has been observed for GLP-1
receptor peptide agonists. A molecule with an extended
and flattened pharmacokinetic profile may be expected to
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have fewer C,,-related side effects. Taken together, we
anticipate that the MIMETIBODY platform may enable the
desired activities of GLP-1 with minimal adverse events.

In conclusion, the data presented suggest that our novel
MIMETIBODY platform can be used to improve the prop-
erties of a bioactive peptide, rendering it more suitable for
therapeutic use. CNTO736 is a potent GLP-1 analogue with
potential to improve treatment of type 2 diabetes. The
half-life of CNTO736 is substantially longer than native
GLP-1, byetta, or liraglutide. It is tempting to speculate
that sustaining superphysiological levels of a GLP-1 recep-
tor agonist will translate into significant improvements in
efficacy with less frequent dosing and the potential to
inhibit disease progression. These data illustrate the po-
tential for applying the MIMETIBODY platform to enhance
the properties of agonist peptide therapeutics for meta-
bolic diseases. More generally, identification of agonist
antibodies or small molecule drugs for multitransmem-
brane receptors remains challenging, and the MIMETI-
BODY platform provides a technology to address this gap
and enable peptide agonist drug development.
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