
















P2X2/X3 (42), and mice genetically lacking these ATP
receptors showmarkedly diminishednerve responses to all
taste qualities (10). ATP is released from type II cells in
response to sweet, bitter, or umami taste stimuli, although
it is not clear whether salty- and sour-sensitive TCs release
ATP in response to taste stimulation (7, 8). In addition,
NTPDase2knockoutmice showanaccumulationofATP in
taste tissue and a concomitant decrease of neural taste
responses (43). All of these data indicate that ATP plays
a crucial role in taste signal transmission. According to

present and previous studies, subsets of sweet responsive
type II TCs might release both GLP-1 and ATP simulta-
neously, andboth are capable of independently producing
a transient increase of nerve activities. Additionally, GLP-
1Rs are expressed in gustatory nerves, but not on TCs. All
GG neurons in rodents express P2X3, and approximately
60% of neurons express P2X2 (44), whereas only a sub-
set of GG neurons express both GLP-1R and P2X2
(Fig. 4C). Taken together,GLP-1 is likely to play a role as an
ancillary but functionally important neurotransmitter in

Figure 6. GLP-1 activates sweet-best S-type gustatory nerve fibers. A) A representative recording from a sweet-best CT fiber
responding to tastants and intravenous injection of GLP-1. Taste stimuli were 10 mM HCl, 20 mM QHCl, 100 mM NaCl, 100 mM
MPG, and 500 mM sucrose (Suc). GLP-1 (20 mg/kg body weight) was injected from the femoral vein. B, C) Response profiles of
S-type (B) and single fibers other than S-type (“others”) (C) in the CT nerve of WT mice. CT fibers are arranged according to
the magnitude of response to GLP-1 injection. D, E) Summary of responses to tastants (10 mM HCl, 20 mM QHCl, 100 mM
NaCl, 100 mM MPG, 500 mM Suc) and intravenous injection of GLP-1 in S-type (D, n = 17) and other types (E, n = 23) of single
CT fibers. All data are presented as the mean 6 SEM. **P , 0.01, Student’s t test.
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cooperation with ATP, and this signaling might be re-
quired for maximal activation of sweet nerve fibers.

Aside from GLP-1, taste bud cells also express several
bioactive peptides. For example, glucagon is frequently co-
expressed with T1R3 and the glucagon receptor (14) and
sweet taste stimuli inhibit basal glucagon secretion from
taste epithelia (17), suggesting that glucagonmay function
as a feedback signal in sweet-sensitive TCs. NPY, VIP, and
cholecystokinin (CCK)areoftenco-expressed in tastebuds
and the majority of TCs expressing these peptides co-
expressed gustducin but not T1R2 (45), suggesting that
thesemay be bitter-sensitive TCs, althoughNPY is released
from taste buds in response to sour and salty taste stimuli
(17). Exogenous application of CCK inhibits K+ currents
in isolated TCs (46) and CCK-sensitive cells show Ca2+

responses to bitter taste stimuli (47), indicating that CCK
may regulate bitter sensitivity of TCs in an autocrine fash-
ion. Exogenous application of NPY activates K+ currents in
isolated TCs (13). The VIP receptor is expressed in type II
cells (18). Thus, NPY, VIP, and CCK may also function as
autocrineorparacrine signals in tastebuds. Inaddition, it is
possible that these peptides may be involved in signal

transmission of particular taste qualities from TCs to gus-
tatory nerve fibers.

We classified S-type fibers into 2 groups according to
their responsiveness toGLP-1 (Fig. 7). Previous reportshad
demonstrated that S-type nervefibers can be classified into
at least 2 distinct groups according to their sensitivity to
gurmarin (48), which is a sweet taste inhibitor in rodents
(49), suggesting that the variation in responsiveness to
GLP-1 by S-type fibers might correlate with their sensitivity
to gurmarin. However, further studies are required to val-
idate this possibility.

GLP-1 is secreted from intestinal endocrine L-cells,
which also express taste signaling elements such as T1R2,
T1R3, gustducin, PLCb2, and transient receptor potential
cation channel subfamily M member 5. Gustducin knock-
outmice are deficient in intestinal secretion of GLP-1 after
ingestion of glucose, and GLP-1 release from the human
L-cell line NCI-H716 cells was promoted by sugars and
the noncaloric sweeteners and blocked by the sweet re-
ceptor antagonist lactisole (21), suggesting that sweet
taste-signaling components contribute toGLP-1 release in
enteroendocrine L-cells. However, in in vivo experiments,
ingestion of artificial sweeteners alone did not affect se-
cretion of GLP-1 (50, 51), indicating that in vivo GLP-1
may not be secreted in response to activation of T1R2/
T1R3-dependent transduction pathways alone. To induce
GLP-1 release from enteroendocrine L-cells in vivo, another
mechanism such as glucose sensing by glucose transporters
and KATP channels may be required in addition to T1R
signaling pathways. In contrast, sweet-sensitive TCs released
GLP-1 in response to both sugars (glucose and sucrose) and
a noncaloric sweetener (saccharin) (Fig. 5). Reduction of
gustatory nerve responses to various sweeteners in GLP-
1R2/2mice(Fig.1) suggests thatmultiple sweetcompounds
including noncaloric sweeteners induceGLP-1 release from
sweet-sensitive TCs.

GLP-1 stimulates insulin secretion from pancreatic islet
b cells and suppresses glucagon secretion from a cells via
GLP-1Rs on these cells, thereby functioning to reduce the
level of plasma glucose. However, it is not clear if GLP-1
released from TCs affects secretion of these hormones
and/or blood glucose levels. In rats and healthy humans,
oral infusion of artificial sweeteners does not increase
plasma GLP-1 levels (50, 51). The amount of GLP-1 re-
leased from TCs may be small or limited locally, thus sys-
temic effects of GLP-1 released from TCs may be below
detectable levels. GLP-1 released from enteroendocrine
cells is also able to activate the vagus nerve (22, 23), which
may in turn activate neurons in the nucleus of the solitary
tract (NTS). Such signals may be reflexively transmitted to
pancreas, stomach, and intestine to regulate the secretion
of hormones (23). Neural signals elicited by GLP-1 re-
leased fromTCsmay also contribute to this reflex pathway
because these signals arealso transmitted toNTSvia theCT
and the GL nerves. During a meal, GLP-1-induced neural
signals would occur in turn from the tongue, intestine, and
then portal vein. Such timing-dependent neural signals
and/or cumulative neural signals to the NTS may be cru-
cial for the regulation of hormonal releases and glucose
homeostasis.

How might sweet-sensitive TCs secrete GLP-1? Sweet-
sensitive TCs release ATP in response to sweet stimuli via
nonvesicular mechanisms, such as pannexin or connexin

Figure 7. The effect of intravenous injection of GLP-1.
A) GLP-1-sensitive and -insensitive S-type fibers. S-type fibers
that elicited more than 30 impulses/10 s in response to i.v.
injection of GLP-1 were classified as GLP-1-sensitive fibers.
B) Time-dependent changes in plasma GLP-1 level after
intravenous injection of GLP-1 (triangles). Mice were admin-
istrated with 20 mg/kg GLP-1 from the femoral vein. Data
were obtained from 5 WT mice. The onsets of firing activities
after i.v. injection of GLP-1 in GLP-1-sensitive S-type fibers
were indicated by X marks (n = 7).
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hemichannels, and CALHM1 (6–9). However, these
channels would not allow peptide hormones like GLP-1 to
pass through their pore. In STC-1 cells, initial secretion of
GLP-1 is released from two types of granules, previously
docked granules and newcomers (39). Such vesicular
mechanisms are likely to be involved in GLP-1 secretion
from TCs. However, type II cells do not show voltage- and
Ca2+-dependent increases in capacitance (52). At present
there is no histochemical evidence for vesicles con-
taining GLP-1 in TCs. Further studies are required to
reveal the mechanisms underlying GLP-1 release from
sweet-sensitive TCs.

Our results suggest that GLP-1, an incretin hormone
that regulates pancreatic hormone release and thereby
glucose homeostasis, also plays a role in the peripheral
sweet taste system, which is important for the detection of
carbohydrates in caloric foods and drinks. Thus, GLP-1
may function as an important glucostatic hormone to
link brain, gut, and taste systems.
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