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SUMMARY

Gut microbiota contribute to host metabolic effi-
ciency by increasing energy availability through
the fermentation of dietary fiber and production of
short-chain fatty acids (SCFAs) in the colon. SCFAs
are proposed to stimulate secretion of the proglu-
cagon (Gcg)-derived incretin hormone GLP-1,
which stimulates insulin secretion (incretin response)
and inhibits gastric emptying. We find that germ-
free (GF) and antibiotic-treated mice, which have
severely reduced SCFA levels, have increased basal
GLP-1 levels in the plasma and increased Gcg
expression in the colon. Increasing energy supply,
either through colonization with polysaccharide-
fermenting bacteria or through diet, suppressed
colonic Gcg expression in GF mice. Increased
GLP-1 levels in GF mice did not improve the incretin
response but instead slowed intestinal transit. Thus,
microbiota regulate the basal levels of GLP-1, and
increasing these levels may be an adaptive response
to insufficient energy availability in the colon that
slows intestinal transit and allows for greater nutrient
absorption.

INTRODUCTION

The gut microbiota has coevolved with the host and contributes

to efficient energy metabolism (Ley et al., 2008; Tremaroli and

Bäckhed, 2012), which confers a selective advantage in condi-

tions of food scarcity. Studies comparing mice that have a

normal microbiota (conventionally raised [CONV-R]) with mice

that lack a microbiota (germ-free [GF]) have demonstrated pro-

found effects of the gutmicrobiota on hostmetabolism. Although

CONV-Rmice eat less, they have significantly more body fat and

higher fasting glucose and insulin levels than GF mice (Bäckhed

et al., 2004). The gut microbiota contributes to metabolic effi-

ciency by increasing energy harvest from the diet as well as
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modulating the expression of host genes to promote energy

storage (Bäckhed et al., 2004, 2005). Unlike the human genome,

the gut microbiome encodes many enzymes for degrading plant

polysaccharides, such as cellulose, xylan, pectin, and resistant

starch (Gill et al., 2006). Gut microbes ferment these otherwise

indigestible polysaccharides in the colon to produce short-chain

fatty acids (SCFAs), a useable energy source for the host. For

humans consuming a typical western diet, microbially produced

SCFAs are estimated to contribute 6%–10% of total energy

requirements, and the contribution is expected to be higher for

humans consuming high-fiber diets and for herbivorous species

(Bergman, 1990).

Efficient energy metabolism requires communication be-

tween the gut and peripheral organs such as the pancreas,

liver, adipose tissue, and brain. Information about nutritional

status in the gut is relayed by various signals, including gut-

derived hormones such as glucagon-like peptide-1 (GLP-1).

Transient postprandial increases in GLP-1 have many effects

on metabolism, including the stimulation of insulin secretion

(incretin effect), inhibition of gastric emptying, and an increased

feeling of satiety (Holst, 2007). Secretion of GLP-1 from enter-

oendocrine L cells can be stimulated by sugars, amino acids,

and long-chain fatty acids (Diakogiannaki et al., 2012). How-

ever, given that these nutrients typically do not reach high

concentrations in the colon, where L cells are found at the

highest density (Eissele et al., 1992), it is unclear how GLP-1

secretion is regulated in the colon. Dietary supplementation

with fermentable fibers has been shown to increase GLP-1

levels in rodents and humans (Delzenne and Cani, 2005; Delz-

enne et al., 2005; Freeland et al., 2010; Zhou et al., 2008), and

SCFAs can stimulate GLP-1 secretion in vitro (Tolhurst et al.,

2012; Zhou et al., 2008). Thus, it has been suggested that

the gut microbiota increases GLP-1 levels through the pro-

duction of SCFAs.

Here, we investigate how the gut microbiota affects the

production of GLP-1 by comparing GF and CONV-R mice. Sur-

prisingly, we find that the absence of microbially produced

SCFAs in GF colon results in significantly higher plasma GLP-1

levels. This colonic-derived GLP-1 has an important role in slow-

ing small intestinal transit, which may be an adaptive response

for promoting nutrient absorption.
evier Inc.
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Figure 1. Plasma GLP-1 Levels, Colonic

Proglucagon Expression, and LCell Number

Are Higher in GF Mice

(A) GLP-1 levels in portal vein plasma of GF (n = 8)

and CONV-R (n = 10) mice that were fasted for 4 hr

prior to blood collection.

(B) Relative proglucagon expression in the small

intestine (SI), cecum (Cec), proximal colon (PC),

mid colon (MC), and distal colon (DC). The small

intestine was divided into eight equal segments,

and gene expression was analyzed in segments 1,

5, and 8 (n = 5 mice per group).

(C) Quantification of GLP-1-immunoreactive (IR)

cells in the cecum (Cec), proximal colon (PC), and

distal colon (DC) of GF and CONV-R mice (n = 5

mice per group).

(D) Representative images of GF and CONV-R

proximal colon stained for GLP-1 (red), cytokeratin

8 (green), and Hoechst (blue).

Scale bars represent 200 mm. Data are presented

as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.
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RESULTS

Basal GLP-1 Levels Are Elevated in GF Mice
Analysis of plasma GLP-1 levels in fasting GF and CONV-R mice

revealed that GLP-1 levels were 3-fold higher in the absence of a

microbiota (Figure 1A). Increased basal GLP-1 levels could be

due to oneormore factors: decreased activity of dipeptidyl pepti-

dase IV (DPPIV, the enzyme that inactivates GLP-1), increased

expression of proglucagon (Gcg, the gene from which GLP-1 is

derived), or increased numbers of L cells. We did not find any dif-

ferences in DPPIV activity in plasma between GF and CONV-R

mice (20.1 ± 0.8 nmol/ml/min [GF] versus 20.1 ± 0.5 nmol/ml/

min [CONV-R]; n = 4; p = 0.98). We found that Gcg expression

was similar in the proximal small intestine of GF and CONV-R

mice but significantly higher in the cecum and colon of GF mice

in comparison to CONV-Rmice (Figure 1B). The greatest fold dif-

ferences were found in the cecum and proximal colon, the re-

gions where microbial density is the highest (Figure 1B). In addi-

tion, GF mice had approximately 4-fold more GLP-1-positive

cells in the cecum and 2-fold more GLP-1-positive cells in the

proximal and distal colon in comparison to CONV-R mice (Fig-

ures 1C and 1D). Thus, elevated plasma GLP-1 levels in GF

mice appear to originate from the cecum and colon, and the

gut microbiota affects both Gcg expression and L cell number.

SCFAs Increase and Proglucagon Expression
Decreases upon Colonization
Energy metabolism in the colon is unique in that colonocytes use

SCFAs, particularly butyrate, as a primary energy source (Roe-

diger, 1980, 1982), whereas most other tissues in the body use

glucose. Colonocytes from GF mice, which lack their preferred

energy source, exhibit defects in energy metabolism, including

reduced ATP levels and impaired mitochondrial respiration

(Donohoe et al., 2011). These energy defects are specific for the

proximal colon and are not observed in other parts of the gut or

other organs (Donohoe et al., 2012). Thus, we hypothesized that

energy availability in the colon affects Gcg expression in L cells.
Cell Host &
To test our hypothesis, we modulated energy availability in the

colon by manipulating the gut microbiota. We analyzed SCFA

levels in cecal content as an indicator of energy availability and

examined the corresponding effects on GLP-1 parameters after

the colonization of GF mice with an unfractionated microbiota

from a CONV-R donor. As expected, the total SCFA concentra-

tion in the cecal content of GF mice was low (Figure 2A). Low

levels of acetate, which are thought to be derived from the diet

(Høverstad and Midtvedt, 1986), were detected, whereas propi-

onate and butyrate were barely detectable (Figures S1A–S1C

available online). After colonization, the SCFA concentration

increased 7-fold after only 24 hr, reaching a level similar to that

of CONV-R mice (Figure 2A). This rapid increase in SCFA con-

centration was associated with significant decreases in colonic

Gcg expression after 24 and 72 hr (Figure 2B). The number of

GLP-1-positive cells in the proximal colon did not change signif-

icantly after 24 hr but decreased to a level similar to CONV-R

72 hr after colonization (Figure 2C). The average plasma GLP-1

levels decreased gradually after colonization, although the differ-

ences were not statistically significant because of large variation

in the sample groups (Figure S1D).

To test the effect of microbial production of SCFAs on Gcg

expression more specifically, we colonized GF mice with single

bacterial strains that have different fermentation abilities. We

chose two representative members of the gut microbiota:

Escherichia coli, a Gram-negative bacterium that ferments sim-

ple sugars (Clark, 1989), and Bacteroides thetaiotaomicron, a

Gram-negative bacterium that ferments a wide range of plant

polysaccharides (Xu et al., 2003). Colonization with E. coli

resulted in a small increase in acetate (Figure S1E) but did not

significantly alter total SCFA levels, Gcg expression, or GLP-1-

positive cell number in comparison to GF (Figures 2D–2F). In

contrast, colonization with B. thetaiotaomicron produced signif-

icant increases in acetate and propionate (Figures S1E–S1G),

resulting in a 4-fold increase in total SCFA levels, a 2.5-fold

decrease in colonic Gcg expression, and a 1.7-fold decrease

in GLP-1-positive cells (Figures 2D–2F). However, GLP-1 levels
Microbe 14, 582–590, November 13, 2013 ª2013 Elsevier Inc. 583
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Figure 2. Corresponding Changes in SCFA Levels, Proglucagon Expression, and GLP-1-Positive Cells after Colonization or Antibiotic

Treatment

(A–C) Total SCFA concentrations (acetate, propionate, and butyrate) in cecal content (A), relative proglucagon expression in proximal colon (B), and quantification

of GLP-1-immunoreactive (IR) cells in proximal colon (C) of GF mice, GFmice that were conventionalized (CONV-D) with microbiota from a CONV-R donor for 24

or 72 hr, and CONV-R mice (n = 4–5 mice per group).

(D–F) Total SCFA concentrations in cecal content (D), relative proglucagon expression in proximal colon (E), and quantification of GLP-1-immunoreactive (IR) cells

in proximal colon (F) of GF mice and mice that were monocolonized for 4 weeks with either E. coli or B. thetaiotaomicron (n = 5–10 mice per group).

(G andH) Total SCFA concentrations in cecal content (G) and relative proglucagon expression in proximal colon (H) of CONV-Rmice that were orally administered

antibiotics (Abx; 200 mg/kg each of bacitracin, neomycin, and streptomycin) or vehicle control (Cont; water) once daily for 3 days (n = 5–6 mice per group).

(legend continued on next page)
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Figure 3. Proglucagon Expression

Increases in GF Mice after Weaning onto

Chow Diet

(A) Relative proglucagon expression in the prox-

imal colon in GF and CONV-R mice on postnatal

days 1 (P1) and 3 (P3) and during the first weeks of

life (1w = 1 week old) (n = 5 mice per group).

Pups were weaned onto standard chow diet at

3 weeks old.

(B–D) Palmitate levels in cecal content (B), total

SCFA levels in cecal content (C), and relative

proglucagon expression in the proximal colon (D)

in 4-week-old GF and CONV-R mice that were

weaned onto either standard chow or HFD (40%of

calories from fat) at 3 weeks of age (n = 4–6 mice

per group).

Data are presented as mean ± SEM. *p < 0.05,

***p < 0.001, ****p < 0.0001.
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were not significantly different after B. thetaiotaomicron coloni-

zation (Figure S1H).

We also examined whether the depletion of the microbiota

in CONV-R mice by antibiotic treatment would increase Gcg

expression. Indeed, we found that 3-day treatment with a com-

bination of antibiotics resulted in a 13-fold decrease in SCFA

concentration and a 3-fold increase in Gcg expression (Figures

2G and 2H).

SCFAs Suppress Proglucagon Expression in GF Colon
To provide direct evidence that SCFAs affect Gcg expression in

the colon, we incubated proximal colon tissue ex vivo with either

a physiological concentration of SCFAs or an equimolar solution

of sodium chloride. SCFA treatment resulted in significantly

lower Gcg expression in GF colon but did not have a significant

effect on Gcg expression in CONV-R colon, which would have

been exposed to high SCFA concentrations in vivo (Figure 2I).

In addition, we fed GFmice a diet containing 10% tributyrin, a tri-

glyceride that is less readily absorbed in the small intestine than

butyrate and is metabolized to butyrate in the colon (Donohoe

et al., 2012). GF mice fed the tributyrin diet had a 2.8-fold in-

crease in butyrate in the cecal content and a 1.3-fold decrease

in colonic Gcg expression in comparison to GF mice fed an

isocaloric control diet (Figures 2J and 2K). Altogether, these

experiments show that SCFAs suppress Gcg expression in GF

colon. This effect does not appear to be specific for a particular

SCFA, given that increasing levels of acetate and propionate

(B. thetaiotaomicron colonization) or butyrate (tributyrin diet)

suppress Gcg expression.
(I) Relative proglucagon expression in proximal colon fromGF (n = 10) and CONV-R (n = 9) mice after 6 hr treat

140 mMmixed SCFAs (80 mM acetate + 40 mM propionate + 20 mM butyrate). Proximal colon segments wer

with NaCl, and the other half was treated with SCFAs.

(J and K) Butyrate concentrations in cecal content (J) and relative proglucagon expression in proximal colo

containing 10% tributyrin oil or an isocaloric control diet for one week (n = 4–6 mice per group).

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S1.

Cell Host & Microbe 14, 582–590, N
Diet and Microbiota Affect
Proglucagon Expression in the
Colon
The contribution of the gut microbiota to

energy harvest in the colon depends on
the composition of the diet. Given that diet and gut microbiota

change considerably at the suckling-to-weaning transition, we

analyzed colonic Gcg expression in GF and CONV-R mice

from birth through young adulthood. In neonatal mice, colono-

cytes obtain energy from milk lactose and lipids, which reach

the colon because the absorptive ability of the small intestine

is not yet fully developed (Pácha, 2000). We hypothesized that

there would be little difference in dietary energy availability,

and, thus, little difference in colonic Gcg expression, between

GF and CONV-R mice during the suckling period. At 3 weeks

of age, mice are weaned onto a standard chow diet, which is

rich in plant polysaccharides. Given that bacterially produced

SCFAs would not be available to replace milk lipids upon wean-

ing in GF mice, we predicted that the resulting energy deficit

would lead to increased Gcg expression in the weeks following

weaning. In agreement with our hypothesis, we found that

colonic Gcg expression did not differ between GF and CONV-R

mice during the first 3 weeks of life but increased substantially in

GF mice in comparison to CONV-R mice at 4 weeks of age (2-

fold) and was even greater at 8 weeks of age (5-fold) (Figure 3A).

In an attempt to determine whether prolonged fasting reduces

colonic energy supply and alters GLP-1 levels in the presence of

a complex microbiota, we subjected CONV-R mice to an 18 hr

fast. However, we found that total SCFA concentrations, colonic

Gcg expression, and plasma GLP-1 levels were not significantly

different in 18 hr fasted mice in comparison to fed mice (data not

shown).

To test whether increasing energy supply from the diet could

suppress the increase inGcg expression in GFmice, we weaned
ment ex vivo with 140mMNaCl (osmotic control) or

e divided in half longitudinally; one half was treated

n (K) of 4-week-old GF mice that were fed a diet

ovember 13, 2013 ª2013 Elsevier Inc. 585
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mice onto a high-fat diet (HFD, 40% of calories from fat) and

analyzed Gcg expression in the proximal colon after 1 week on

the diet. We analyzed cecal levels of the long-chain fatty acid

palmitate because it is abundant in the diet and has previously

been shown to rescue the defect in mitochondrial respiration in

GF colonocytes (Donohoe et al., 2011). We found that cecal

palmitate levels were much higher in HFD-fed mice in compari-

son to chow-fed mice and that colonization status did not have

a significant effect on palmitate levels (Figure 3B). In addition,

we found that colonization status had a smaller effect on SCFA

levels for HFD-fed mice than for chow-fed mice (Figure 3C).

Importantly, the increase in colonic Gcg expression observed

in GF mice in comparison CONV-R mice on a chow diet was

abolished in GF mice fed an HFD (Figure 3D). Altogether, these

results support our initial hypothesis that energy availability in

the colon affects Gcg expression.

Increased GLP-1 in GF Mice Results in Slower Intestinal
Transit
Next, we examined the physiological consequences of

increased GLP-1 levels. The role of colonic-derived GLP-1 is

not well understood, but GLP-1 is well-characterized as an

incretin hormone (Holst, 2007). Thus, we investigated whether

increased GLP-1 levels in GF mice contribute to improved

oral glucose tolerance. We found that GF mice have signifi-

cantly better oral glucose tolerance than CONV-R mice (Fig-

ure 4A). However, blocking GLP-1 signaling with the GLP-1

receptor antagonist exendin 9-39 (Ex-9) shifted glucose toler-

ance curves to a similar extent for GF and CONV-R mice (fold

difference AUC [Ex-9:saline] = 1.3 for both groups) (Figures 4A

and 4B). Furthermore, although GF mice had lower fasting insu-

lin levels, the fold increase in insulin after glucose gavage was

similar in GF and CONV-R mice (Figures S2A–S2B). Thus, there

are underlying differences in glucose metabolism in GF and

CONV-R mice, but the relative incretin effect of GLP-1 appears

to be similar. GLP-1 can also promote b cell proliferation and

survival (Holst, 2007). However, there were no significant differ-

ences in b cell mass or in insulin content of islets in GF and

CONV-R mice (Figures S2C–S2E). We conclude that enhancing

glucose metabolism in GF mice, which are already lean and in-

sulin sensitive, is not the primary function of increased basal

GLP-1 levels. Furthermore, the rapid postprandial secretion of

GLP-1, which accounts for the majority of the incretin effect,

occurs before ingested nutrients reach the colon and remains

intact in patients after ileal resection or colectomy (Nauck

et al., 1996). These observations suggest that colonic-derived

GLP-1 may be more important for late-phase secretion or other

functions.

Next, we investigated whether increased GLP-1 levels in GF

mice play a role in the modulation of gastric emptying and

gastrointestinal transit, given that these processes are known

to be regulated by GLP-1 (Marathe et al., 2011) and that the

overexpression of GLP-1 from neuroendocrine tumors has

been associated with severely reduced gastrointestinal transit

in humans (Brubaker et al., 2002; Byrne et al., 2001). In agree-

ment with previous findings (Kashyap et al., 2013; Samuel

et al., 2008), we found that GF mice exhibited significantly

slower small intestinal transit in comparison to CONV-R controls

(Figure 4C). Given that the overall rate of gastric emptying
586 Cell Host & Microbe 14, 582–590, November 13, 2013 ª2013 Els
was similar in GF and CONV-R mice (Figure S2F), the difference

in transit most likely reflects a difference in small intestinal

motility. To determine whether the slower intestinal transit in

GF mice depends on GLP-1 signaling, we measured transit in

mice that had been preadministered Ex-9. Strikingly, blocking

GLP-1 signaling with Ex-9 completely rescued the transit

phenotype in GF mice (Figure 4C). Although Ex-9 treatment

had the expected effect on glucose tolerance in CONV-R

mice (Figure 4A), it had no effect on transit in CONV-R mice

(Figure 4C).

As additional support for the role of elevated GLP-1 levels in

slowing intestinal transit, we investigated transit in Glp-1r�/�
mice and C57Bl/6 controls after treatment with antibiotics. Anti-

biotic treatment resulted in significantly lower cecal SCFA levels,

3-fold higher colonic Gcg expression, and approximately 3-fold

higher GLP-1 levels in both C57Bl/6 and Glp-1r�/� mice (Fig-

ures S2G–S2I). However, although intestinal transit was signifi-

cantly slower after antibiotic treatment in C57Bl/6 mice, there

was no significant difference in transit between control- and anti-

biotic-treatedGlp-1r�/�mice (Figure 4D). These results demon-

strate that functional GLP-1 receptor signaling is required to slow

intestinal transit after antibiotic treatment.

Consistent with the trends observed forGcg expression, L cell

number, and GLP-1 levels, we found that intestinal transit

increased significantly 72 hr after colonization with a complete

microbiota (Figure 4E) and after monocolonization with

B. thetaiotaomicron but not E. coli (Figure 4F). We also found

that intestinal transit was normalized to the CONV-R rate in GF

mice that were fed an HFD (Figure 4G).

DISCUSSION

Here, we show that colonic Gcg expression, L cell number, and

basal GLP-1 levels are significantly elevated in GF mice, which

lack microbially produced SCFAs. Given that colonocytes use

SCFAs, particularly butyrate, as a primary energy source, colo-

nocytes from GF mice are energy deprived (Donohoe et al.,

2011). We find that increasing energy availability by colonizing

with polysaccharide-fermenting bacteria or supplementing the

diet with short- or long-chain fatty acids reduces colonic Gcg

expression, suggesting that colonic L cells sense local energy

availability and regulate basal GLP-1 secretion accordingly.

In addition, perturbation of the microbiota in CONV-R mice

by antibiotic treatment results in reduced SCFA levels and

increased Gcg expression and GLP-1 levels. Thus, the contin-

uous production of SCFAs by the gut microbiota under normal

physiological conditions may play a role in establishing basal

GLP-1 levels.

Although average plasma GLP-1 levels decreased after

colonization, the differences were not statistically significant

because of large variation within the groups. This may reflect

normal variations in our mouse population and/or problems

with sample degradation. Accurate measurement of active

GLP-1 is difficult because of rapid degradation—the half-life of

active GLP-1 in plasma is estimated to be 1–2 min (Holst,

2007). We attempted to minimize GLP-1 degradation with the

use of DPPIV inhibitors and aprotinin and by processing samples

at 4�C, but we cannot exclude the possibility that degradation

contributed to variation in our sample groups.
evier Inc.
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Figure 4. Slower Small Intestinal Transit in GF Mice Is Dependent on GLP-1 Signaling
(A and B) Oral glucose tolerance (A) and average area under the curve (AUC) (B) of GF andCONV-Rmice that were pretreatedwithGLP-1 antagonist Ex-9 or saline

control (A) (n = 5–7 mice per group).

(C) Small intestinal transit in GF and CONV-R mice that were pretreated with Ex-9 or saline control (n = 5 mice per group).

(D) Small intestinal transit in C57Bl/6 and Glp-1r�/� mice that were orally administered antibiotics (Abx; 200 mg/kg each of bacitracin, neomycin, and

streptomycin) or vehicle control (Cont; water) once daily for 3 days (n = 6–7 mice per group).

(E) Small intestinal transit in GF mice, GF mice that were conventionalized (CONV-D) with microbiota from a CONV-R donor for 24 or 72 hr, and CONV-R mice

(n = 5 mice per group).

(F) Small intestinal transit in GF mice and mice that were monocolonized for 4 weeks with either E. coli or B. thetaiotaomicron (n = 5 mice per group).

(G) Small intestinal transit in 4-week-old GF and CONV-R mice that have been fed standard chow or HFD for 1 week (n = 4–6 mice per group).

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S2.

Cell Host & Microbe

Microbiota Regulates GLP-1 and Gut Transit
We show that intestinal transit in GF mice is accelerated by

the GLP-1 receptor antagonist Ex-9 and that the antibiotic-

induced effect on intestinal transit is abolished in Glp-1r�/�
mice, demonstrating that functional GLP-1 receptor signaling

is required to slow intestinal transit when the microbiota is

absent or depleted. Ex-9 treatment had no effect on transit in
Cell Host &
CONV-R mice. Similarly, experiments in rats have shown that

Ex-9 treatment had no effect on basal contractile motility in the

small intestine but could reverse the inhibition in contractile

motility caused by peptone infusion (Giralt and Vergara, 1999).

These results suggest that basal GLP-1 levels have little effect

on intestinal transit under normal physiological conditions,
Microbe 14, 582–590, November 13, 2013 ª2013 Elsevier Inc. 587
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whereas increases in GLP-1, either transient (e.g., in response to

nutrients) or chronic (e.g., in response to energy deprivation in

the colon), may slow intestinal transit and, thus, be reversible

by Ex-9.

The elevated GLP-1 levels in GF mice do not appear to affect

satiety, given that GF mice are known to eat more (Bäckhed

et al., 2004). This might be explained by the fact that the

anorectic effect of GLP-1 is dependent on glucose availability

(Sandoval et al., 2012) and that GF mice have lower blood

glucose levels. In addition, given that GLP-1 is rapidly degraded,

it may have stronger effects locally, for example, on enteric neu-

rons to regulate transit than centrally. Other hormones, such as

leptin, which is lower in GF mice (Bäckhed et al., 2004), may

have more important roles in regulating food intake.

We propose that colonic GLP-1 has an important function in

slowing intestinal transit in response to insufficient energy avail-

ability in the colon. Given that intestinal transit rate affects both

nutrient absorption and bacterial growth (Stephen et al., 1987),

it needs to be tightly regulated in order to allow for optimal

nutrition while protecting against bacterial overgrowth and path-

ogenic infection. We propose that, in the absence of a micro-

biota, colonic-derived GLP-1 increases in order to slow intestinal

transit, allowing more time for nutrient absorption. Upon coloni-

zation and the resulting increase in energy availability, colonic

GLP-1 is suppressed in order to speed up transit, thus pre-

venting bacterial overgrowth. We attempted to reduce colonic

energy supply by fasting mice for 18 hr but found no significant

difference in SCFA concentrations. Therefore, a longer fasting

period or long-term caloric restriction might be required to

reduce SCFA concentrations to a level that would significantly

alter GLP-1 levels. Elevated GLP-1 levels and slower gastroin-

testinal transit times have been reported in patients with anorexia

nervosa (Germain et al., 2007; Kamal et al., 1991), suggesting

that this function may be conserved in humans. Our findings

provide an example of how the microbial contribution to energy

supply affects host gene expression and physiology in the gut.

EXPERIMENTAL PROCEDURES

Mice and Diets

Unless otherwise indicated, experiments were performedwith 12- to 15-week-

old Swiss Webster mice that were fed an autoclaved low-fat, polysaccharide-

rich chow diet (LabDiet 5021) ad libitum. GF Swiss Webster mice were

maintained in flexible film isolators under a strict 12 hr light cycle. GF status

was monitored regularly by anaerobic culturing and PCR for bacterial 16S

ribosomal RNA. For the tributyrin diet experiment, 3-week-old mice were

weaned onto either TestDiet 5W2G (LabDiet 5020 fortified with 10% tributyrin

oil [Sigma-Aldrich] and irradiated) or isocaloric irradiated control LabDiet 5020

(a nonautoclavable version of LabDiet 5021). For the HFD experiment, 3-week-

old mice were weaned onto an irradiated high-fat, high-sugar western diet with

40% of calories from fat (Adjusted Fat Diet TD.96132, Harlan Teklad). All

mouse experiments were performed with protocols approved by the Research

Animal Ethics Committee in Gothenburg, Sweden.

Colonization of GF Mice

For colonization with an unfractionated microbiota, the cecal content from an

adult CONV-R mouse was resuspended in 5 ml sterile PBS, and 200 ml was

given by oral gavage to GFmice. The resulting CONV-Dmice were maintained

in standard makrolon cages for 24 or 72 hr. For monocolonization experi-

ments, sterile cotton swabs were dipped in liquid culture of either E. coli

W3110 or B. thetaiotaomicron VPI-5482 (ATCC 29148) and fed to GF mice.

Monocolonized mice were housed in separate sterile isolators for 4 weeks.
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At the end of the colonization period, mice were fasted for 4 hr before killing

and tissue harvest. Colonization density was verified by culture.

Antibiotic Treatment

Mice were given oral gavage of bacitracin, neomycin, and streptomycin

(200 mg/kg body weight of each antibiotic) or water (vehicle control) each

morning for 3 days. On day 4, mice were fasted for 4 hr before analyzing small

intestinal transit and organ harvest.

Measurement of SCFAs and Palmitate

SCFAandpalmitate levels in cecal contentwere analyzedwith amodification of

the methods described previously (Moreau et al., 2003; Samuel et al., 2008).

Approximately 100 mg of cecal contents and 100 ml of internal standards

(16 mM acetate, 3.2 mM propionate, and 3.7 mM butyrate for SCFA or 1 mM

forpalmitate)wereadded toglassvialsand freezedried.Sampleswereacidified

with50ml of 37%HCl, andSCFAsandpalmitatewereextractedwith two rounds

of diethyl ether extraction (2 ml diethyl ether, rotation shake for 15 min, and

centrifugation for 5 min at 2,000 3 g). The organic supernatant was collected,

50 ml of the derivatization agent N-tert-butyldimethylsilyl-N-methyltrifluoroace-

tamide (Sigma-Aldrich) was added, and samples were incubated overnight.

SCFAsor palmitatewerequantifiedwithagaschromatograph (Agilent Technol-

ogies 7890A) coupled to a mass spectrometer (Agilent Technologies 5975C).

Ex Vivo Experiments

One centimeter pieces of proximal colon were excised, divided in half longitu-

dinally, and prepared for organ culture as described previously (Cima et al.,

2004). One half was treated for 6 hr with 140mMmixed SCFA (80mMacetate +

40 mM propionate + 20 mM butyrate), a concentration representative of phys-

iological conditions in rodent cecum (Hara et al., 1999; Mineo et al., 2006;

Suzuki et al., 2008). The control half was treated with 140 mM NaCl as an

osmotic control. Tissues were washed in PBS, frozen immediately in liquid

nitrogen, and stored at �80�C until quantitative RT-PCR analysis.

Glucose Tolerance Tests

Mice were fasted for 4 hr and given oral gavage of 20%D-glucose (3 g/kg body

weight). Blood was drawn from the tail vein at 0, 30, 60, 90, and 120 min, and

blood glucose levels were measured with a HemoCue glucometer. Extra blood

was collected from the tail vein at 0, 15, and 30min for analysis of serum insulin

levels with insulin ELISA assay (Crystal Chem). For Ex-9 experiments, mice

received intraperitoneal injection of Ex-9 (250 nmol/kg body weight, Sigma-

Aldrich) or 0.9%saline (vehicle control) 30minbefore thestart of theexperiment.

Small Intestinal Transit

Mice were fasted for 4 hr and given oral gavage of 100 ml of 1.5% methylcel-

lulose containing 5% Evans Blue dye (Sigma-Aldrich). Small intestinal transit

was assessed 45 min after gavage in Swiss Webster mice and 30 min after

gavage in C57Bl/6 and Glp-1r�/�mice. The total length of the small intestine

and the length covered by Evans Blue were measured, and transit was

expressed as the percent of small intestinal length covered by Evans Blue.

For Ex-9 experiments, mice received intraperitoneal injections of Ex-9

(250 nmol/kg body weight) or 0.9% saline (vehicle control) at 2 hr and at

30 min prior to the start of the experiment.

Statistical Analysis

Data are presented as mean ± SEM. Statistical differences between groups of

two were analyzed with a Student’s t test, comparisons of three or more

groups with one independent variable (e.g., colonization status) were analyzed

by one-way ANOVA with ad hoc Bonferroni post tests, and comparisons of

groups with two or more independent variables (e.g., colonization status and

diet) were analyzed by two-way ANOVA with ad hoc Bonferroni post tests

with the use of GraphPad Prism 5.
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