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SUMMARY
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the
chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic
inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic
inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here,
we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-a)
by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial
GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs
similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including
sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads
to reduced TNF-a via a1-adrenergic, d-opioid, and k-opioid receptor signaling. These data extend emerging
concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral
inflammation.
INTRODUCTION

Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are pep-

tide-based medications used to lower blood glucose and body

weight in people with type 2 diabetes (T2D) and obesity.1 GLP-

1RAs also reducemajor adverse cardiovascular events in people

with T2D and obesity2 and are being explored in late-stage clin-

ical trials for treatment of metabolic-associated fatty liver dis-

ease3 and neurodegenerative diseases, including Parkinson’s

disease and Alzheimer’s disease.4 Although the anti-inflamma-

tory efficacy of GLP-1RAs likely reflect reductions in glucose

and body weight,5 direct or indirect engagement of the

GLP-1R with the immune system may also contribute.

GLP-1RAs reduce myeloid-cell-driven inflammation in mouse

models with diet-induced obesity,6 diet-induced steatohepati-

tis,7–9 experimental atherosclerosis or nephritis,8,10 coronary ar-

tery ligation-induced myocardial infarction,11 and diet-induced

cardiomyopathy.12 Reconciling these anti-inflammatory benefits

of GLP-1RAs with evidence for GLP-1R expression in immune

cells is challenging because myeloid cells express low levels of
the canonical GLP-1R,5,13 and in several mouse models, GLP-

1RAs retain their efficacy in mice lacking hematopoietic cell

GLP-1Rs.8,11 Although some anti-inflammatory effects of GLP-

1RAs have been attributed to GLP-1R-expressing T cells,8,14,15

the T cell GLP-1R alone was insufficient to explain the anti-in-

flammatory actions of GLP-1RAs on myeloid cells.14 Hence,

the GLP-1R-expressing cell type(s) responsible for the systemic

anti-inflammatory actions ensuing from GLP-1R activation

remain incompletely characterized.

Myeloid cells, particularly monocytes and macrophages,

express a variety of Toll-like receptors (TLRs) that recognize bac-

terial and viral components.16 The prototypical TLR4 agonist lipo-

polysaccharide (LPS) is an outer cell membrane component of

gram-negative bacteria that potently activates myeloid cells.16

Activation of TLR4signaling stimulates production of tumor necro-

sis factor alpha (TNF-a), interleukin 1 beta (IL-1b), and interleukin 6

(IL-6), togetherwithotherpro-inflammatorycytokines.16ThisTLR4

response is conserved across other TLRs,17 and these receptor

pathways constitute a fundamental mechanism by which innate

immune cells sense foreign pathogens and initiate inflammation.
Cell Metabolism 36, 1–14, January 2, 2024 ª 2023 Elsevier Inc. 1
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Figure 1. Exendin-4 prevents the full induction of plasma TNF-a by ligands of various Toll-like receptors

Plasma TNF-a levels in C57BL/6J mice treated with exendin-4 (10 nmol/kg) or vehicle (saline), together with the following Toll-like receptor agonists or vehicle

(saline) i.p. (A) Pam3CSK4 (100 mg) for 1 h, (B) zymosan (300 mg) for 2 h, (C) poly I:C (100 mg) for 1 h, (D) lipopolysaccharides (35 mg) for 3 h, (E) flagellin (3 mg) for 1 h,

(F) R848 (30 mg) for 1 h, or (G) CpGODN 1826 (15 nmol) for 1 h. n = 4–10. Each panel was pooled from data of two independent experiments. Data are represented

as mean ± SD. *p < 0.05, **p < 0.01. Two-way ANOVA tests with Sidak post hoc tests in (A), (B), (D), (E), and (G).
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These innate immune responses are also controlled by the central

nervous system (CNS), which regulates the peripheral immune

system indirectly through both neural and hormonal signals.18

Both the endogenous GLP-1 system and exogenous GLP-

1RAs regulate the peripheral immune response to LPS. GLP-1-

producing enteroendocrine L cells express TLR4 and secrete

GLP-1 upon exposure to LPS in an IL-6-dependent manner.19

GLP-1RAs inhibit T cell-mediated inflammation via the gut

T cell GLP-1R, but this receptor is dispensable for the inhibitory

effects of GLP-1RAs on LPS-induced systemic inflamma-

tion.14,20 Notably, these pathways are likely conserved across

species because LPS increases L cell GLP-1 secretion in

humans19 and GLP-1RAs reduce biomarkers of inflammation

in human subjects.21,22 It remains unclear whether GLP-1RAs

suppress inflammation induced by TLR agonists other than

LPS and on which GLP-1R-expressing cell population(s) GLP-

1RAs act to suppress LPS-induced inflammation.

Given the low levels of GLP-1R expression in most immune

and myeloid cell types,5 we hypothesized that GLP-1RAs inhibit

LPS-induced inflammation by activating non-myeloid cells, spe-

cifically, neuronal GLP-1Rs. We first screened multiple TLR ago-

nists to probe the generalizability of the anti-inflammatory effects

of GLP-1RAs. We next challenged mice lacking the GLP-1R in

hematopoietic cells or in neurons, with LPS and simultaneous

administration of GLP-1RAs. We further explored the effects of

GLP-1RAs on inflammation and the associated responses in a

cecal slurry model of polymicrobial sepsis. Pharmacological

studies identified inhibitory actions of GLP-1RAs on LPS-
2 Cell Metabolism 36, 1–14, January 2, 2024
induced TNF-a via multiple distinct neuroendocrine signaling

pathways. A combination of mouse genetics and probing of

CNS pathways using intracerebroventricular (i.c.v.) administra-

tion of ligands and antagonists revealed that engagement of cen-

tral neuronal GLP-1Rs suppressed peripheral inflammation.

RESULTS

GLP-1R activation diminishes the induction of plasma
TNF-a by TLR agonists
Toexamine theanti-inflammatoryeffectsofGLP-1RAspursuant to

activation of different TLRs,we injectedmice intraperitoneally (i.p.)

with the GLP-1RA exendin-4, utilized clinically as exenatide, and

the following TLR agonists: Pam3CSK4 (TLR2/TLR1), zymosan

(TLR2/dectin-1), polyinosinic:polycytidylic acid (poly I:C; TLR3),

LPS (TLR4), flagellin from Salmonella typhimurium (TLR5), R848

(TLR7/TLR8), orCpGODN1826 (TLR9), followedbyquantification

of plasma cytokines 1–3 h later. All TLR agonists acutely raised

plasma levelsofTNF-a (Figures1A–1G), andmost increased levels

of IL-10, IL-6, C-X-C motif ligand 1 (CXCL1), and IL-1b

(Figures S1A–S1G). T cell cytokines, including interferon-g (IFN-

g), IL-2, IL-4, and IL-5, were not induced appreciably by any of

these TLR agonists (not shown). Exendin-4 lowered plasma

TNF-a levels induced by numerous TLR agonists, including

Pam3CSK4, zymosan, LPS, flagellin, and CpG ODN 1826

(Figures 1A, 1B, 1D, 1E, and 1G). For most of the TLR agonists

studied, exendin-4 had no consistent effects on the plasma levels

of IL-10, IL-6, CXCL1, or IL-1b (Figures S1A–S1G). Because
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exendin-4 produced the strongest decrease (�35%) in TNF-a

induced by LPS among all TLR agonists tested (Figure 1D),

we focused subsequent experiments on LPS, a commonly used

stimulator of the innate immune system, to interrogate themecha-

nisms by which GLP-1RAs suppress TLR-induced systemic

inflammation.

GLP-1R activation downregulates blood leukocyte and
lung Tnf expression during LPS-induced inflammation
TNF-a is a key pro-inflammatory cytokine potently induced upon

TLR activation in myeloid lineages, includingmonocytes, macro-

phages, and neutrophils.23,24 To identify the tissues contributing

to the reduced circulating levels of TNF-a, we quantified Tnf

mRNA and TNF-a protein levels in cells and tissues of LPS-chal-

lenged mice treated with or without exendin-4. These included

blood leukocytes, spleen, and lungs, which are rich in myeloid

cells,25 and jejunum and liver, where GLP-1R+ immune cells

reside.8,15 3 h of LPS treatment upregulated Tnf mRNA in all of

these tissues, but only the jejunum and lungs exhibited elevated

TNF-a protein content (Figures S2A and S2B). Nonetheless,

exendin-4 neither downregulated Tnf mRNA nor TNF-a content

in any of these tissues (Figures S2A and S2B).

Because exendin-4 had no effect on tissue TNF-a levels as

assessed at 3 h, we treated mice with LPS and exendin-4 and

assessed TNF-a after 1 h, a time point at which plasma TNF-a

approaches maximum levels.26 LPS treatment potently raised

plasma TNF-a and IL-10 levels (Figure 2A), and co-administra-

tion of exendin-4 decreased plasma TNF-a and increased

plasma IL-10 in response to LPS (Figure 2A). Furthermore,

exendin-4 downregulated Tnf mRNA in blood leukocytes and

lungs but not in the spleen, jejunum, or liver of mice exposed

to LPS for 1 h (Figure 2B). Moreover, exendin-4 did not alter

TNF-a content in the spleen, jejunum, liver, or lungs of these

mice (Figure S2C).

We next examined genes relevant to TNF-a production in the

blood leukocytes and lungs of mice treated with LPS and

exendin-4 for 1 h. In blood leukocytes, exendin-4 did not alter

the expression of Adam17, which encodes the enzyme that

cleaves and releases TNF-a from cell membranes, monocyte/

macrophage markers Adgre1 and Ccr2, and Il1b and Ccl4,

a monocyte/macrophage-derived cytokine and chemokine,

respectively (Figure 2C). Although exendin-4 downregulated

both Ccl2 and Il6 in blood leukocytes (Figure 2C), it did not lower

plasma monocyte chemoattractant protein-1 (MCP-1; encoded

by Ccl2) or IL-6 levels (Figure S2D). Exendin-4 upregulated Tlr4

in blood leukocytes of mice treated with vehicle but not with

LPS (Figure 2C). Exendin-4 did not alter the expression of these

genes in the lungs of LPS-treated mice (Figure S2E).

Lower levels of plasma TNF-a may reflect a reduced number

of myeloid cells in the blood. Flow cytometry experiments

showed that leukocyte counts, including lymphocytes, Ly6C+

monocytes, and Ly6G+ neutrophils, were decreased with LPS

treatment (Figure S2F). However, exendin-4 did not further

modify the proportion of these cells in LPS-treated mice (Fig-

ure S2F). We also examined the peritoneal cavity, a primary

responder site to LPS when administered via i.p. injection.27

Exendin-4 had no effect on TNF-a levels or the number of F4/

80+ cells in the peritoneal lavage fluid of LPS-treated mice

(Figures S2G and S2H). Hence, among the tissues surveyed,
lower plasma TNF-a in exendin-4-treated mice was associated

with downregulated Tnf expression in circulating leukocytes

and lungs.

GLP-1RAs attenuate LPS-induced inflammation via
actions requiring central neuronal GLP-1Rs
Although exendin-4 downregulated Tnf expression in blood

leukocytes, these cells expressed very low levels of Glp1r

comparedwith other tissues examined (Figure S2I). Nevertheless,

toexplore thepossible linkbetween leukocyteGLP-1Rexpression

and the effect of exendin-4 on circulating TNF-a, we studied Tie2-

Cre;Glp1rflox/flox (Glp1rTie2�/�) mice, which lack Glp1r in all he-

matopoietic and endothelial cell lineages.11Wemeasured plasma

TNF-a levels inGlp1rTie2�/� mice treated with LPS and exendin-4

for 1 h. Plasma TNF-a was reduced following exendin-4 adminis-

tration in Tie2-Cre;Glp1r+/+ (Glp1rTie2+/+) and Glp1rTie2�/� mice

(Figure3A). Toexaminewhether thiswasadirect effecton immune

cells, we cultured whole blood and splenocytes isolated from

C57BL/6J mice with LPS and exendin-4, or dexamethasone as a

control, for 6 h. In both whole blood and splenocytes, LPS-stimu-

lated TNF-a release, and dexamethasone, but not exendin-4,

directly reduced TNF-a release (Figure 3B). Therefore, hematopoi-

etic and endothelial GLP-1Rs are not required for GLP-1RAs to

reduce levels of LPS-stimulated TNF-a.

In mice, the GLP-1R is abundantly expressed in the hypothal-

amus and brainstem,28,29 with both regions identified as critical

for central and peripheral coordination of immune responses

during systemic inflammation.18,30 In Wnt1-Cre2;Glp1rflox/flox

(Glp1rWnt1�/�) mice, Glp1r expression is reduced in both the hy-

pothalamus and brainstem.29 To test whether neuronal GLP-1Rs

are required for the GLP-1R-dependent reduction in TNF-a, we

treated control and Glp1rWnt1�/� mice with exendin-4 and LPS

for 1 h. Peripheral administration of exendin-4 lowered plasma

TNF-a in Wnt1-Cre2; Glp1r+/+ (Glp1rWnt1+/+) but not in

Glp1rWnt1�/� mice (Figure 3C). By contrast, plasma IL-10 levels

were higher in both Glp1rWnt1+/+ and Glp1rWnt1�/� mice treated

with exendin-4 (Figure S3A), suggesting divergent mechanistic

regulation of IL-10 vs. TNF-a by exendin-4. Importantly,

exendin-4 downregulated TnfmRNA in blood leukocytes of con-

trol but not Glp1rWnt1�/� mice (Figure S3B). To independently

verify the importance of CNS GLP-1Rs for the systemic anti-in-

flammatory actions of GLP-1RAs in a second mouse model ex-

hibiting reduced Glp1r expression in the CNS, we repeated the

LPS experiments in Nestin-Cre;Glp1rflox/flox (Glp1rNes�/�) mice,

which exhibited more complete knockdown of Glp1r in the

CNS including the brainstem and hypothalamus, relative to

Glp1rWnt1�/� mice.29,31 Consistent with findings in Glp1rWnt1�/�

mice, exendin-4 prevented the full induction of LPS-induced

plasma TNF-a in control mice but not in Glp1rNes�/� mice

(Figure 3D).

Glp1r expression is downregulated in the enteric nervous sys-

temofGlp1rWnt1�/�mice29 and, to a lesser extent, in thedistal gut

of Glp1rNes�/� mice (Figure S3C). To independently determine

whether exendin-4 acts on the CNS to influence plasma TNF-a,

we injected C57BL/6Jmice i.c.v. with the GLP-1R antagonist ex-

endin(9-39), followed by i.p. injection of LPS and exendin-4 for 1

h. We first determined the extent to which i.c.v. administered ex-

endin(9-39) enters the circulation. We quantified plasma exen-

din(9-39) levels in mice given various doses of exendin(9-39)
Cell Metabolism 36, 1–14, January 2, 2024 3
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Figure 2. The decrease in LPS-induced TNF-a upon exendin-4 treatment is associated with downregulation of Tnf in blood leukocytes

and lungs

(A) Plasma TNF-a and IL-10 in C57BL/6J mice treated with LPS (35 mg) or vehicle (saline) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 3–14. Data

were pooled from two independent experiments.

(B) Expression of Tnf in blood leukocytes, lungs, spleen, jejunum, and liver of C57BL/6J mice treated with LPS (35 mg) or vehicle (saline) and exendin-4 (10 nmol/

kg) or vehicle (saline) i.p. for 1 h. Expression was reported relative to Tbp (a reference gene). n = 3–11. Data were pooled from two independent experiments.

(C) Expression of Adam17, Adgre1, Ccl2, Ccl4, Ccr2, Il1b, Il6, and Tlr4 in blood leukocytes from C57BL/6J mice treated with LPS (35 mg) or vehicle (saline) and

exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. Expressionwas reported relative to Tbp (a reference gene). n = 3–11. Data were pooled from two independent

experiments.

Data are represented as mean ± SD. *p < 0.05, **p < 0.01. Two-way ANOVA tests with Sidak post hoc tests in (A)–(C).
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i.c.v. or i.p. using an exendin-4 ELISA that recognizes theC termi-

nus of exendin and thus cross-reacts with exendin(9-39) (Fig-

ure S3D). Exendin(9-39) given i.c.v. up to 1 mg did not raise

plasma levels of immunoreactive exendin(9-39) (Figure 3E). How-

ever, adoseof 5mgexendin(9-39) given i.c.v. raisedplasma levels

to 50% of the level seen in mice injected with 5 mg of exendin(9-

39) i.p. (Figure 3E). Accordingly, we performed the i.c.v. experi-

ments with 1 mg exendin(9-39). This dose of exendin(9-39) did

not have a significant effect on LPS-induced TNF-a on its own,
4 Cell Metabolism 36, 1–14, January 2, 2024
but it abolished the effect of systemically administered

exendin-4 on plasma TNF-a (Figure 3F). Thus, a dose of exen-

din(9-39) given i.c.v. thatwasnotdetectable in theperiphery elim-

inated the exendin-4-mediated decrease in plasma TNF-a.

To determine whether the anti-inflammatory actions of

exendin-4 were evident with other structurally distinct GLP-1-

based medications, we repeated the LPS experiments with

semaglutide, a long-acting GLP-1RA, or tirzepatide, a GLP-1R

and glucose-dependent insulinotropic peptide receptor (GIPR)
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Figure 3. GLP-1RAs attenuate LPS-induced inflammation via actions requiring neuronal GLP-1Rs

(A) Plasma TNF-a levels inGlp1rTie2+/+ andGlp1rTie2�/�mice treated with LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 7–9. Data were

pooled from two independent experiments.

(B) Supernatant TNF-a levels secreted by whole blood (left) and splenocytes (right) isolated from C57BL/6J mice and incubated with LPS (10 ng/mL), exendin-4

(50 nM), dexamethasone (1 mM), and/or vehicle (0.1% v/v ethanol) for 6 h. n = 4.

(C) Plasma TNF-a levels in Glp1rWnt1+/+ and Glp1rWnt1�/� mice treated with LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 9–13. Data

were pooled from four independent experiments.

(D) Plasma TNF-a levels in Glp1rNes+/+ and Glp1rNes�/� mice treated with LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 10–14. Data

were pooled from four independent experiments.

(E) Plasma exendin(9-39) levels in C57BL/6J mice injected with various doses of exendin(9-39) i.c.v. or i.p. or vehicle (saline) for 1.5 h. n = 3–11. Data were pooled

from three independent experiments.

(F) Plasma TNF-a levels in C57BL/6Jmice injected with exendin(9-39) (1 mg) i.c.v. for 30 min followed by LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline)

i.p. for 1 h. n = 10. Data were pooled from three independent experiments.

(G) Left: plasma TNF-a levels inGlp1rNes+/+ andGlp1rNes�/� mice subcutaneously injected with semaglutide (2.44 nmol/kg) or vehicle (saline) for 1 h, followed by

i.p. injection of LPS (35 mg) for 1 h. n = 7–9. Right: plasma TNF-a levels inGlp1rNes+/+ andGlp1rNes�/�mice subcutaneously injected with tirzepatide (3 nmol/kg) or

vehicle (saline) for 1 h, followed by i.p. injection of LPS (35 mg) for 1 h. n = 6–11. Data were pooled from two independent experiments.

Data are represented as mean ± SD. *p < 0.05, ****p < 0.0001. Two-way ANOVA tests with Sidak post hoc tests in (A)–(D), (F), and (G).
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co-agonist,32 in Glp1rNes�/� mice. Semaglutide attenuated the

induction of TNF-a by LPS in control but not in Glp1rNes�/�

mice (Figure 3G). In contrast, tirzepatide effectively prevented

the full induction of TNF-a by LPS in both control andGlp1rNes�/�

mice (Figure 3G). Overall, our genetic and pharmacological ex-

periments suggest that central neuronal GLP-1Rs are required

for the systemic anti-inflammatory actions of peripherally admin-

istered GLP-1RAs.
GLP-1R activation attenuates sepsis-associated
pathologies in a cecal slurry model of polymicrobial
sepsis
Exendin-4 treatment attenuated the induction of plasma TNF-a

by ligands of TLR1, TLR2, TLR4, TLR5, or TLR9 (Figure 1), recep-

tors which recognize bacterial components.17 Therefore, we hy-

pothesized that neuronal GLP-1R activation similarly inhibits

inflammation associated with bacterial infection. To test this
Cell Metabolism 36, 1–14, January 2, 2024 5
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Figure 4. Semaglutide ameliorates multiple pathologies in a cecal slurry model of polymicrobial sepsis

(A and B) (A) Sepsis scores and (B) rectal temperature of C57BL/6J mice over 24 h after i.p. injection of vehicle or cecal slurry (600 mg/kg) and subcutaneous

injection of vehicle or semaglutide (2.44 nmol/kg). n = 5–12. Data were pooled from two independent experiments.

(legend continued on next page)
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hypothesis, we injected mice with cecal slurry prepared from

healthy C57BL/6J donors, a procedure that causes polymicro-

bial infection and induces myeloid-driven inflammation across

multiple organs.33 C57BL/6J mice injected with cecal slurry

developed features of experimental sepsis within 24 h, including

sepsis-associated sickness (Figure 4A), hypothermia (Figure 4B),

and bacterial infection in multiple organs (Figures 4C and S4A).

Concurrent treatment with semaglutide ameliorated the sick-

ness and hypothermia in cecal slurry-exposed mice

(Figures 4A and 4B). Semaglutide also decreased the bacterial

load in the lungs (Figure 4C), but not in the blood, spleen, or liver

(Figure S4A), of cecal slurry-treated mice. Similar to LPS, cecal

slurry raised the circulating levels of multiple pro-inflammatory

cytokines (Figures 4D and S4B). Notably, plasma levels of

TNF-a, IL-1b, IL-6, and CXCL1 were lower in semaglutide-

treated mice (Figures 4D and S4B). The semaglutide-treated

mice had higher plasma IL-2 but not IFN-g or IL-10 (Figure S4B).

Following observations that (1) lungs are particularly prone to

injury caused by sepsis,34 (2) liraglutide has been shown to pro-

tect against pathogen-associated inflammation in lungs,35,36

and (3) exendin-4 downregulated Tnf in the lungs of LPS-treated

mice (Figure 2B), we examined whether semaglutide attenuated

sepsis-induced lung inflammation. Cecal slurry treatment

increased lung TNF-a, IL-1b, IL-6, and CXCL1 content, whereas

semaglutide decreased levels of these pro-inflammatory mole-

cules in the lungs (Figures 4E and S4C). IL-2 was not detectable

in the lungs of cecal slurry-treated mice. Neither cecal slurry nor

semaglutide altered lung IFN-g content; however, lung IL-10

content was lower in mice treated with cecal slurry and semaglu-

tide (Figure S4C). Lung expression of Tnf and Il1b, but not Il6,

was also lower in semaglutide-treated mice (Figure S4D).

Genes related to tissue remodeling and neutrophil infiltration,

includingMmp9, Timp1, and Ly6g, were downregulated by sem-

aglutide in the lungs of cecal slurry-treated mice (Figure 4F). His-

tological analyses revealed lung injury caused by cecal slurry in-

jection featured neutrophil infiltration into the interstitium, mild

septal thickening, collapsed alveoli, and interstitial hemorrhage

(Figure 4G). The infiltration of neutrophils was independently

confirmed by immunohistochemical analyses of neutrophil elas-

tase (Figure 4H), a marker of activated neutrophils.37 Consistent

with the gene expression changes, the lung injury scores and the

number of lung elastase-positive neutrophils were lower in the

semaglutide group (Figures 4G and 4H).

We next performed the cecal slurry experiments inGlp1rWnt1�/�

mice. Cecal slurry-treated Glp1rWnt1�/� mice exhibited sickness

and hypothermia similar to control Glp1rWnt1+/+mice (Figures 4I
(C–H) (C) The lung bacterial load, (D) plasma cytokine levels, (E) lung cytokine le

hematoxylin and eosin-stained sections, and (H) lung immunohistochemistry stain

cecal slurry (600 mg/kg) and subcutaneous injection of vehicle or semaglutide (2.4

For (G), green arrows indicate neutrophil infiltration. Scale bars, 100 mm. n = 5–1

(I and J) (I) Sepsis scores and (J) rectal temperature ofGlp1rWnt1+/+ andGlp1rWnt1�

injection of vehicle or semaglutide (2.44 nmol/kg). n = 9–14. Data were pooled fr

(K–P) (K) Blood and spleen bacterial loads, (L) plasma cytokine levels, (M) lung cyt

from hematoxylin and eosin-stained sections, and (P) lung immunohistochemistry

i.p. injection of cecal slurry (600 mg/kg) and subcutaneous injection of vehicle or s

reference gene). For (O), green arrows indicate neutrophil infiltration. Scale bars,

Data are represented as mean ± SD. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0

the asterisks denote the Sidak post hoc test comparisons between the cecal slur

denote the Sidak post hoc test comparisons between the Glp1rWnt1+/+ + vehicle
and 4J). However, although semaglutide attenuated the

sickness and hypothermia in cecal slurry-treated control mice,

these actions of semaglutide were absent in Glp1rWnt1�/� mice

(Figures 4I and 4J). Blood and spleen bacterial loads were lower

in semaglutide-treated control but not in Glp1rWnt1�/� mice (Fig-

ure 4K), whereas semaglutide had no effect on liver and lung bac-

terial loads in either genotype (Figure S4E).

Examining parameters of systemic inflammation, in contrast to

findings in wild-type control mice, semaglutide failed to atten-

uate levels of TNF-a, IL-1b, IL-6, and IL-10 in plasma and lung

of cecal slurry-treated Glp1rWnt1�/� mice (Figures 4L, 4M, S4F,

and S4G). Semaglutide had no effect on plasma or lung

CXCL1 or IFN-g levels in either genotype (Figures S4F and

S4G), although plasma IL-2 levels were higher in semaglutide-

treated control but not Glp1rWnt1�/� mice (Figure S4F). Concor-

dant with the protein assays, semaglutide failed to downregulate

lung Tnf and Il1b in Glp1rWnt1�/� mice (Figure S4H). Lung Il6

expression did not change in the semaglutide-treated group

(Figure S4H). Semaglutide downregulated lung Mmp9, Timp1,

and Ly6g expression in control mice but not in Glp1rWnt1�/�

mice (Figure 4N). Similarly, semaglutide-treated control mice

had lower lung injury scores and numbers of lung elastase-pos-

itive neutrophils, effects that were abolished in Glp1rWnt1�/�

mice (Figures 4O and 4P). Collectively, semaglutide protects

against polymicrobial sepsis-associated pathologies, including

sickness behaviors, hypothermia, systemic inflammation, and

lung injury, actions which require the expression of neuronal

GLP-1Rs.

Blocking a1-adrenergic signaling abolishes the anti-
inflammatory effects of GLP-1RAs on LPS-induced
inflammation
We next explored possible pathways through which GLP-1R

activation attenuates TLR-mediated inflammation, using plasma

TNF-a as a readout. Administration of GLP-1RAs can modify

plasma lipid species involved in inflammation, including lipidme-

diators.38 These lipid species may lower plasma cytokines,

including TNF-a.39 Accordingly, we performed lipidomics ana-

lyses on the plasma of C57BL/6J mice treated with LPS and

exendin-4 i.p. and quantified the lipid mediators by targeted lip-

idomics and major classes of lipids by untargeted lipidomics.

However, exendin-4 had no effect on the levels of plasma lipid

species detected, including lipid mediators derived from arach-

idonic acid, eicosapentaenoic acid, and docosahexaenoic acid

(Table S1), and lipids, including glycerolipids, phospholipids,

sphingolipids, and sterols (Table S2). Hence, suppression of
vels, (F) lung Mmp9, Timp1, and Ly6g expression, (G) lung injury scores from

ing of neutrophil elastase in C57BL/6Jmice 24 h after i.p. injection of vehicle or

4 nmol/kg). For (F), expression was reported relative to Tbp (a reference gene).

2. Data were pooled from two independent experiments.
/�mice over 24 h after i.p. injection of cecal slurry (600 mg/kg) and subcutaneous

om four independent experiments.

okine levels, (N) lungMmp9, Timp1, and Ly6g expression, (O) lung injury scores

staining of neutrophil elastase inGlp1rWnt1+/+ andGlp1rWnt1�/� mice 24 h after

emaglutide (2.44 nmol/kg). For (N), expression was reported relative to Tbp (a

100 mm. n = 8–14. Data were pooled from four independent experiments.

001. Two-way ANOVA tests with Sidak post hoc tests in (A)–(P). For (A) and (B),

ry + vehicle vs. cecal slurry + semaglutide groups. For (I) and (J), the asterisks

vs. Glp1rWnt1+/+ + semaglutide groups.
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Figure 5. Antagonism of the a1-adrenergic receptor abolishes the decrease in TNF-a levels following exendin-4 treatment

(A) Plasma TNF-a in C57BL/6Jmice treated with mifepristone (10mg/kg) i.p. for 1 h followed by LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1

h. n = 5–9. Data were pooled from two independent experiments.

(B) Plasma TNF-a in sham or bilaterally adrenalectomized (ADX) C57BL/6J mice treated with LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h.

n = 4–7. Data were pooled from two independent experiments.

(C–H) Plasma TNF-a in C57BL/6Jmice pre-treated i.p. with the following cholinergic and adrenergic inhibitors: (C) atropine (1mg/kg) for 10min, (D) propranolol (5

mg/kg) for 30min, (E) ICI-118,551 (5 mg/kg) for 30min, (F) phentolamine (1 or 10mg/kg) for 15min, (G) prazosin (1 mg/kg) for 15 min, and (H) yohimbine (1 mg/kg)

for 15 min, followed by LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 4–10 in vehicle groups, n = 6–15 in cholinergic and adrenergic

inhibitor groups. Each panel comprises data pooled from two independent experiments.

Data are represented as mean ± SD. *p < 0.05, **p < 0.01. Two-way ANOVA tests with Sidak post hoc tests in (A)–(H).
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LPS-induced inflammation by exendin-4 is not associated with

changes in the plasma lipid species measured.

The CNS also regulates the peripheral immune system via the

hypothalamic-pituitary-adrenal (HPA) axis and the autonomic

nervous system (ANS).18 We first explored the role of the HPA

axis in mediating the effect of exendin-4 on TNF-a. In rodents,

i.c.v. injection of GLP-1RAs raises plasma corticosterone levels

by activation of the HPA axis,40 which may result in peripheral

immunosuppression. We used both pharmacological and surgi-

cal methods to address the putative role of the HPA axis. Treat-

ment with mifepristone, an anti-glucocorticoid and anti-proges-

togen, enhanced LPS-induced TNF-a levels in C57BL/6J mice

(Figure 5A). Yet, exendin-4 still prevented the full induction of

TNF-a by LPS in mice treated with mifepristone (Figure 5A).

We next studied adrenalectomized (ADX) mice, which hadmark-

edly lower plasma corticosterone levels than sham-operated

mice (Figure S5A). LPS-treated ADX mice had higher TNF-a

levels than LPS-treated sham-operated controls. However,

TNF-a levels were lower in ADX mice in response to exendin-4

administration (Figure 5B). Collectively, the decrease in plasma

TNF-a upon GLP-1R activation did not involve the HPA axis.

Within the ANS, the sympathetic nervous system suppresses

peripheral immune responses by neuroendocrine activation of

adrenergic receptors on lymphocytes, monocytes, and macro-

phages.41,42 In the parasympathetic nervous system, vagal
8 Cell Metabolism 36, 1–14, January 2, 2024
afferent nerves relay peripheral cytokine signals to the CNS,

which then activates the HPA axis.43,44 Vagal efferent nerves

can inhibit TNF-a produced by splenic macrophages directly in

an acetylcholine-dependent manner,45,46 or indirectly via the

splanchnic nerve in the sympathetic nervous system.47 The in-

crease in heart rate by GLP-1RAs via both the sympathetic

and parasympathetic nervous systems represents a related

example of ANS control via similar mechanisms.48

We pre-treated C57BL/6J mice with various inhibitors of ANS

signaling, followed by administration of LPS and exendin-4.

Atropine, an anticholinergic that inhibits parasympathetic tone,

did not attenuate the inhibitory effect of exendin-4 on LPS-

induced plasma TNF-a levels (Figure 5C). Nevertheless, the

same dose of atropine, inhibited gastric emptying (Figure S5B).

Hence, exendin-4 does not appear to act via cholinergic path-

ways to attenuate LPS-induced inflammation.

In the sympathetic nervous system, neuroendocrine release of

adrenaline and noradrenaline leads to activation of a- and

b-adrenergic receptors. Injection of the pan-b blocker proprano-

lol augmented LPS-induced TNF-a levels but did not abrogate

the effects of exendin-4 to reduce TNF-a levels (Figure 5D).49

Nevertheless, the same dose of propranolol reduced basal heart

rate in mice (Figure S5C). Among the subtypes of b-adrenergic

receptors, the b2-adrenergic receptor is abundantly expressed

in macrophages and transduces anti-inflammatory actions.50
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Figure 6. Antagonism of the d- or k-opioid receptor abolishes the decrease in TNF-a levels following exendin-4 treatment

(A–F) Plasma TNF-a levels in C57BL/6J mice pre-treated with the following opioid receptor agonists or antagonists: (A) buprenorphine (100 mg/kg) s.c. for 1 h, (B)

DAMGO (1 mg/kg) i.p. for 15 min, (C) naloxone (1 mg/kg) i.p. for 15 min, (D) CTAP (1 mg/kg) i.p. for 15 min, (E) naltrindole (1 mg/kg) i.p. for 15 min, and (F) nor-BNI

(1 mg/kg) i.p. for 15 min, followed by LPS (35 mg) and exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 5–13. Each panel comprises data pooled from two

independent experiments.

(G) Plasma TNF-a levels in C57BL/6J mice injected with naltrindole (1.5 mg), nor-BNI (1.5 mg), or vehicle (saline) i.c.v. for 30 min followed by LPS (35 mg) and

exendin-4 (10 nmol/kg) or vehicle (saline) i.p. for 1 h. n = 6–8. Data were pooled from three independent experiments.

Data are represented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Two-way ANOVA tests with Sidak post hoc tests in (A)–(G).
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b2-adrenergic antagonism with ICI-118,551 enhanced plasma

TNF-a levels in LPS-treatedmice (Figure 5E).51 However, consis-

tent with the data for propranolol, ICI-118,551 had no effect on

the anti-inflammatory actions of exendin-4 (Figure 5E).

We next assessed the consequence of a-adrenergic blockade.

As opposed to b-blockers, the pan-a blocker phentolamine given

at a dose of 10 mg/kg led to a decrease in TNF-a by LPS (Fig-

ure 5F),52 and this dose of phentolamine abolished the inhibitory

effects of exendin-4 on TNF-a (Figure 5F). At a dose of 1 mg/kg,

phentolamine had a less pronounced effect on TNF-a yet still

abolished the effects of exendin-4 onTNF-a (Figure 5F). This lower

dose of phentolamine was sufficient to induce tachycardia in

conscious mice (Figure S5C), a known effect of pan-a-adrenergic

agonists.53 To ascertain the a-adrenergic receptor subtypes

involved in the anti-inflammatory effect of exendin-4, we pre-

treated LPS-challenged mice with either prazosin, an a1-adren-

ergic antagonist, or yohimbine, an a2-adrenergic antagonist.

Similar to findings with phentolamine, both prazosin and, to a

lesser extent, yohimbine blunted the LPS-induced TNF-a

response (Figures 5G and 5H).49,54 In prazosin-treated mice,

exendin-4 treatment did not lead to a decrease in plasma TNF-a

(Figure 5G), but in yohimbine-treated mice, plasma TNF-a was

lower in the exendin-4 vs. vehicle group (Figure 5H). Notably, pra-

zosin did not affect the reduction in TNF-a by dexamethasone

(Figure S5D), suggesting that blocking a1-adrenergic receptors

selectively abolished the anti-inflammatory effect of exendin-4.
Blocking d- or k-opioid receptors abolishes the anti-
inflammatory effects of GLP-1RAs
In initial pilot experiments to test the effects of exendin(9-39) in

the brain, we injected mice subcutaneously with the analgesic

buprenorphine 1 h prior to the i.c.v. injections. However,

exendin-4 had no effect on plasma TNF-a levels in LPS-treated

mice given vehicle or exendin(9-39) i.c.v. (Figure S6A). We sus-

pected that buprenorphine abolished the effect of exendin-4

on plasma TNF-a. In an independent set of experiments without

i.c.v. injections, exendin-4 did not decrease plasma TNF-a in bu-

prenorphine-treated mice challenged with LPS (Figure 6A).

Consequently, we administered lidocaine topically as an anal-

gesic in all of the i.c.v. experiments shown.

Buprenorphine is a partial agonist of the m-opioid receptor and

an antagonist of the d- and k-opioid receptors.55 We postulated

that the activation of the m-opioid receptor and/or the inhibition of

d- and k-opioid receptors (via buprenorphine) abolished the ef-

fect of exendin-4 on plasma TNF-a. Pre-treatment with the

m-opioid receptor agonist [D-Ala2,N-MePhe4, Gly-ol]-enkephalin

(DAMGO) did not alter LPS-induced plasma TNF-a nor the inhib-

itory effect of exendin-4 (Figure 6B). DAMGO given at this dose

effectively inhibited gastric emptying (Figure S6B), a known ef-

fect of opioid administration.56 We next tested the effect of

naloxone, an opioid antagonist that blocks m-, d-, and k-opioid

receptors. Naloxone itself had no effect on LPS-induced TNF-

a, but it abolished the reduction of TNF-a in exendin-4-treated
Cell Metabolism 36, 1–14, January 2, 2024 9
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mice (Figure 6C). By contrast, naloxone did not abolish the

lowering of TNF-a by dexamethasone (Figure S6C).

Next, we used specific antagonists to ascertain the opioid re-

ceptor subtypes that mediate the effect of exendin-4. Pre-treat-

ment with the m-opioid receptor-specific antagonist D-Phe-Cys-

Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) did not change plasma

TNF-a in LPS-treated mice, nor did it abrogate the inhibitory ef-

fect of exendin-4 on TNF-a (Figure 6D). Naltrindole, a d-opioid re-

ceptor-specific antagonist, also did not affect plasma TNF-a

levels induced by LPS, but it eliminated the inhibitory effect of

exendin-4 on TNF-a levels (Figure 6E). Similar to naltrindole,

the k-opioid receptor-specific antagonist norbinaltorphimine

(nor-BNI) had no intrinsic effect on LPS-induced TNF-a but

blocked the effect of exendin-4 on TNF-a levels (Figure 6F).

Although opioid receptors are mainly expressed centrally,

these receptors are also expressed in the spinal cord and

gut.57 To localize the TNF-a-lowering effect of exendin-4 to the

central d- and/or k-opioid receptor, we injected naltrindole or

nor-BNI i.c.v. followed by an i.p. injection of LPS and

exendin-4. Central administration of naltrindole, but not nor-

BNI, abolished the inhibitory effect of exendin-4 on plasma

TNF-a levels in LPS-treated mice (Figure 6G).

Lastly, we analyzed published single-nucleus RNA sequencing

datasets, interrogating whether neural cells co-express Glp1r,

Adra1a/Adra1b/Adra1d (encodes the three subtypes of a1-adren-

ergic receptors), andOprd1 (encodes the d-opioid receptor) in the

hindbrain and/or hypothalamus. In the hindbrain dataset that

spans the nucleus tractus solitarius and area postrema,58 Glp1r

was detected mainly in neurons rather than non-neuronal cells

(Figure S6D). These neurons also expressed Adra1a, Adra1b,

and Oprd1 (Figure S6D). Similar to the hindbrain, Glp1r was ex-

pressed primarily in the neurons and minimally in non-neuronal

cells in the hypothalamus (Figure S6E).59 Based on the anatomical

annotations,59 neurons from the paraventricular nucleus of the hy-

pothalamus, arcuate nucleus, and tuberal nucleus express high

levels of Glp1r (Figure S6E). Glp1r+ neurons in the paraventricular

nucleus of the hypothalamus and tuberal nucleus express Adra1a

but not Adra1b (Figure S6E). A cluster of Glp1r+ neurons in the

arcuate nucleus co-express Adra1a, Adra1b, and Oprd1 (Fig-

ure S6E). Adra1d was not detected in any of these datasets.

Importantly, in situ hybridization data from the Allen Brain Atlas re-

vealed labeling of bothGlp1r andOprd1 in the pontine gray of the

hindbrain (Figure S6F).60 By contrast, Adra1a/Adra1dweremainly

detected in the medulla oblongata of the hindbrain (not shown),

and no data on Adra1b were available from the atlas.

DISCUSSION

The innate immune system recognizes micro-organism compo-

nents and the inflammatory responses that ensue, constituting

the first line of defense against foreign pathogens, but dysfunc-

tion in the innate immune system response can lead to overt,

uncontrolled inflammation resulting in various inflammatory dis-

orders.61 Here, we show that GLP-1RAs reduce inflammation

caused by both synthetic (Pam3CSK4 and CpG) and natural,

pathogen-derived (zymosan, LPS, flagellin, and live bacteria

from cecal slurry) ligands of various TLRs. These data extend

the anti-inflammatory actions of GLP-1RAs, first described for

LPS, to other pro-inflammatory TLR agonists. GLP-1RA treat-
10 Cell Metabolism 36, 1–14, January 2, 2024
ment led to reduced LPS-induced plasma TNF-a through mech-

anisms requiring neuronal GLP-1Rs, the a1-adrenergic receptor,

and the d- and k-opioid receptor. Our findings propose a com-

mon and central mechanism of GLP-1RAs against inflammation

induced by activation of various TLRs. Given the low level of

GLP-1R expression within circulating and tissue resident TLR-

expressing immune cells, our new data indicate an important

role of CNS GLP-1Rs to indirectly counteract peripheral TLR-

mediated inflammation.

The concerted anti-inflammatory actions of GLP-1RAs on the

gut T cell GLP-1R,14,15 and on central neuronal GLP-1Rs as

shown here, expands our mechanistic understanding of how

GLP-1RAs reduce inflammation and tissue injury in diseases

characterized by disordered and excess inflammation. GLP-

1RAs dampen T cell-mediated inflammation directly by acting

on the gut intraepithelial lymphocyte GLP-1R,14 as opposed to

TLR-induced inflammation, where the anti-inflammatory actions

of GLP-1RAs are mediated centrally. Because both adrenergic

and opioid signaling are immunosuppressive,62,63 central GLP-

1R activation appears to recruit these pathways to suppress

inflammation. The type and origin of inflammation dictates

whether peripheral and/or central GLP-1Rs are involved in the

anti-inflammatory actions of GLP-1RAs.

Tirzepatide binds both the GLP-1R and GIPR,64 with its weight

loss effect mediated via theGLP-1R inmice,65 likely via GLP-1Rs

expressed in central neurons. By contrast, although the inhibi-

tory effect of GLP-1RAs, including exendin-4 and semaglutide,

on LPS-induced inflammation was abolished in Glp1rNes�/�

mice, tirzepatide still decreased plasma TNF-a in these mice

lacking CNS GLP-1Rs. Because GIPR agonism can attenuate

inflammation in adipose tissue, macrophages, and brain,66,67 it

seems likely that tirzepatide reduces inflammation via both the

GLP-1R and the GIPR in mice with LPS-induced inflammation.

Cecal slurry injection induces polymicrobial sepsis by dissem-

inating cecal bacteria into the peritoneum that subsequently

reach peripheral organs, triggering overt inflammation and tissue

injury. Semaglutide ameliorated the sickness behaviors, hypo-

thermia, and systemic inflammation caused by the polymicrobial

infection. Moreover, semaglutide protected against infection-

associated lung injury by inhibiting local inflammation and

preventing neutrophil infiltration, effects that were recently

demonstrated in a cecal slurry- and hyperoxia-induced lung

injury model using another GLP-1RA, liraglutide.36 Here, we

showed that GLP-1RAs require the expression of neuronal

GLP-1Rs to mitigate polymicrobial sepsis, implying that GLP-

1RAs attenuate sepsis-associated dysfunction through their

central anti-inflammatory effects. GLP-1RAs did not consistently

lower bacterial loads in multiple organs, implying that the atten-

uated inflammation unlikely resulted from the inhibition of bacte-

rial infection. Notably, TNF-a is known to mediate sickness be-

haviors, hypothermia, and neutrophil extravasation during

acute lung injury.68–70 Taken together, GLP-1R activation, acting

via central neuronal GLP-1Rs, attenuates multiple sepsis-asso-

ciated pathologies resulting from the downstream actions of

pro-inflammatory cytokines, particularly TNF-a.

Central GLP-1R activity also controls heart rate,48,71 gastric

emptying,29 gastropancreatic exocrine secretion,72 and food

intake.29 Although the specific brain regions mediating the

peripheral anti-inflammatory effect of GLP-1RAs remain to be
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precisely identified, candidate regions likely express high levels

of GLP-1Rs and may be distinct from those that control meta-

bolic functions. The GLP-1R in the dorsal vagal complex of the

brainstem and hypothalamus mediates many physiological ef-

fects of GLP-1,5 and expression of Glp1r in these parts of the

brain was reduced in Glp1rWnt1�/� mice.29 Glp1r, Adra1a, and

Oprd1 were co-localized to specific regions of the hindbrain

and the hypothalamus. Collectively, we suspect that GLP-

1RAs suppress peripheral inflammation, likely by activating

hindbrain and/or hypothalamic GLP-1Rs. As the central hub of

autonomic signals, the dorsal vagal complex expresses all of

the machinery necessary to regulate peripheral inflammation,

including GLP-1,73 catecholamines,74 enkephalin,75 and their

cognate receptors, further bolstering the relevance of the dorsal

vagal complex GLP-1R. Representing another potential site of

action for GLP-1RAs to inhibit peripheral inflammation, the limbic

systemalso expresses theGLP-1R,76 and neuronal activity in the

limbic system is controlled by the endogenous opioid system.77

Our studies of the inhibitory actions of GLP-1RAs on immune-

cell-dependent inflammation provide an important framework

for understanding the efficacy of GLP-1RAs on numerous

seemingly unrelated diseases.1,14 GLP-1RAs reduce rates of

cardiovascular disease and are being tested in phase 3 trials of

metabolic liver disease, kidney disease, and Alzheimer’s

disease, disorders known to be exacerbated by dysregulated

immune responses.1,5 Improvements in the acute TLR-mediated

inflammation model conferred by GLP-1RAs do not require the

metabolic benefits of GLP-1RAs, dissociating the anti-inflamma-

tory properties of GLP-1RAs from reductions in glycemia or body

weight. In addition, previous studies in murine models of diet-

induced obesity, steatohepatitis, and atherosclerosis failed to

link the anti-inflammatory actions of GLP-1RAs to the myeloid

cell GLP-1R,6–10,12 likely due to the low expression of the GLP-

1R in myeloid cells.8,13 Our current data extend the importance

of the gut-CNS-GLP-1R axis to encompass the systemic control

of TLR-dependent inflammation, actions with broad importance

for understanding how GLP-1RAs constrain inflammation and

reduce the chronic complications of metabolic disease.

Limitations of the study
Our studies demonstrated acute anti-inflammatory effects of

exendin-4 on TLR-dependent inflammation, but whether the

same mechanisms and pathways transduce chronic effects of

GLP-1RAs to reduce inflammation, in mice with diabetes or

obesity, has not been studied here. Models with chronic, low-

grade inflammation involving myeloid cells where GLP-1RAs

have shown therapeutic potential, such as diet-induced obesity,

steatohepatitis, or atherosclerosis models may provide more in-

sights. Although 1 mg of exendin(9-39) given i.c.v. did not result in

detectable levels of exendin(9-39) in the blood, it did not pre-

clude the possibility that a very small amount of exendin(9-39)

enters the circulation and blocks peripheral GLP-1Rs. TNF-a

was chosen as a key readout throughout our LPS studies, but

other cytokines, such as IL-10, could also be involved in the

anti-inflammatory actions of GLP-1RAs. The precise neuronal lo-

cations of the anti-inflammatory actions of GLP-1RAs in the brain

remains to be identified, and non-neuronal cells in the brain such

as astrocytes, oligodendrocytes, and pericytes that express the

GLP-1Rmay also contribute to these actions.5 It is not clear how
blocking the a1-adrenergic receptor and k-opioid receptor

signaling peripherally abolishes the effects of GLP-1RAs on

LPS-induced TNF-a. Moreover, only male mice were studied

here; hence, ongoing studies in male and female mice should

refine the precise neuro-immune pathways linking CNS GLP-

1Rs to suppression of peripheral inflammation.
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No proprietary data or code is associated with this manuscript. All unprocessed data used for plotting the figures and supplemental

information in themanuscript are available asData S1. Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal studies
All animal protocols were approved by the Animal Care and Use Subcommittee at the Toronto Centre for Phenogenomics at Mount

Sinai Hospital (Toronto, Canada). Malemice (femaleswere not studied) were housed as groups of up to five per cage in holding rooms

with lights on between 7 am to 7 pm and ad libitum access to water and a chow diet (Enivgo).

Ten to twelve-week-old male C57BL/6Jmicewere obtained from Jackson Laboratory.Glp1rfl/fl mice were provided by Randy See-

ley.31Glp1rTie2-/-,8Glp1rWnt1-/-,29 andGlp1rNes-/- mice,31 were generated by crossing Tie2-Cre, Wnt1-Cre2, and Nestin-Cre mice with

Glp1rfl/fl mice respectively. Glp1rTie2+/+, Glp1rWnt1+/+, and Glp1rNes+/+ mice represented control animals pooled from Cre-positive

controls (Tie2-Cre;Glp1r+/+, Wnt1-Cre2;Glp1r+/+, and Nestin-Cre;Glp1r+/+ respectively) and Cre-negative floxed controls (Glp1rfl/fl).

Male mice produced from these crossings were used in all TLR agonist and cecal slurry experiments. All male Cre-positive controls

and Glp1rfl/fl mice show similar responses of exendin-4 to LPS-induced TNF-a.

Male C57BL/6J mice that had undergone bilateral adrenalectomy or sham surgery were purchased from Jackson Laboratory. The

surgery was performed on mice six-seven weeks old, and the operated mice were allowed to recover for at least three weeks before

the LPS experiments. Both sham and adrenalectomized mice were maintained on 0.9% saline instead of water after the surgery.

METHOD DETAILS

Drug and chemical treatment
For all in vivo TLR agonist experiments, exendin-4 (10 nmol/kg) (Chi Scientific) and various TLR agonists were injected i.p.. One to

three hours after the injections, the mice were euthanized, and their tissues were collected for RNA and protein analyses. All TLR

agonist-exendin-4 experiments were performed on mice that had no prior exposure to exogenous TLR agonists.

For LPS-semaglutide experiments, mice naı̈ve to LPS were injected with semaglutide (2.44 nmol/kg; or 10 mg/kg) subcutaneously

for one hour, followed by i.p. injection with LPS for one hour. For LPS-tirzepatide experiments, the mice used in the LPS-semaglutide

experiments were allowed to recover for four weeks. The tirzepatide treatments for these mice were crossed over, i.e. the vehicle

group in the LPS-semaglutide experiments received tirzepatide, and the semaglutide group received vehicle. These mice were in-

jected subcutaneously with tirzepatide for one hour, followed by i.p. injection with LPS for one hour.

The following TLR agonists were used in this study: Pam3CSK4 (Invivogen), zymosan (Invivogen), polyinosinic:polycytidylic

acid (poly I:C; Invivogen), LPS O111:B4 (MilliporeSigma), flagellin from Salmonella typhimurium (Invivogen), R848 (Invivogen),

and CpG ODN 1826 (Invivogen). The following drugs were used in this study: exendin-4 (Chi Scientific), semaglutide (Novo Nordisk),

tirzepatide (Eli Lily), dexamethasone (MilliporeSigma), and dexamethasone 21-phosphate (MilliporeSigma). The following antago-

nists were given prior to LPS treatment: exendin(9-39) (Chi Scientific), mifepristone (MilliporeSigma), atropine (MilliporeSigma), pro-

pranolol (MilliporeSigma), ICI-118,551 (MilliporeSigma), phentolamine (MilliporeSigma), prazosin (MilliporeSigma), yohimbine

(MilliporeSigma), buprenorphine (Ceva), DAMGO (MilliporeSigma), naloxone (MilliporeSigma), CTAP (MilliporeSigma), naltrindole
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(MilliporeSigma), and nor-BNI (MilliporeSigma). For in vitro LPS experiments, dexamethasone dissolved in 0.1% (v/v) ethanol was

used. For in vivo LPS experiments, the water-soluble dexamethasone 21-phosphate was used instead.

Analyte measurements
Blood was collected by saphenous vein or cardiac puncture into a tube coated with heparin lithium (Sarstedt) and supplemented

with 1/10 TED (5000 KIU/mL Trasylol, 4 mM EDTA, 0.1 nM diprotin A). For plasma, blood samples were spun at 13000 g at 4oC

for 5 minutes to recover the supernatant. Protein lysates were prepared by homogenizing tissues in a lysis buffer (50 mM Tris pH

8, 1 mM EDTA, 10% glycerol, 0.067% Brij-35) supplemented with protease inhibitors (MilliporeSigma) using the TissueLyzer II (Qia-

gen). ELISAs for TNF-a, IL-10, IL-12 p70, IL-1b, IL-6, CXCL1, IFNg, IL-2, IL-4, IL-5, and MCP-1 (Meso Scale Discovery) were

measured per manufacturer’s instructions. For exendin(9-39) measurement, an exendin-4 ELISA (Phoenix Pharmaceuticals) that

cross-reacts completely with the C-terminus of exendin(9-39) and exendin-4 was used. Its specificity for exendin(9-39) was

confirmed with a standard curve prepared from exendin(9-39) (Chi Scientific) stock solution, which showed identical concentrations

as the standard curve of equimolar exendin-4 (Figure S3D). Plasma corticosterone was measured with a corticosterone ELISA

(ALPCO) per manufacturer’s instructions.

Gene expression analysis
Blood leukocytes were prepared by lysing whole blood in an RBC lysis buffer (BioLegend) for 15 minutes. Lysed blood was washed

with PBS, spun at 670 g for 3 minutes, and the recovered leukocytes were lysed in TRIzol. Peripheral tissues were homogenized in

TRIzol using the TissueLyzer II. Total RNA was extracted with a standard chloroform and ethanol extraction protocol, followed by

cDNA synthesis using SuperScript III (ThermoFisher) and analysis by quantitative PCR using Taqman assays (ThermoFisher).

Relative expression was calculated using the 2-DDCT method with Tbp as the reference gene (14706621, REF).

Flow cytometry
Cells were blocked with anti-CD16/CD32 (BioLegend) and stained with the following primary antibodies: CD45, CD3, CD19, CD11b,

Ly6C, and Ly6G (BioLegend). SYTOX-AAD (ThermoFisher) was used as a viability stain. Stained samples were analyzed on the

Gallios flow cytometer (Beckman Coulter).

Peritoneal lavage collection
To collect peritoneal lavage, a volume of 5mL cold 0.5mMEDTA in PBSwas injected into the peritoneum of a euthanizedmouse. The

peritoneum was gently massaged to facilitate the release of the peritoneal cells. The lavage was withdrawn with a needle and a sy-

ringe and spun at 670 g for 3 minutes to recover the supernatant for TNF-a measurement and the cell pellet for flow cytometry.

Cytokine secretion assays
Whole blood culture was set up by mixing 100 mL freshly drawn mouse blood with 400 mL complete RPMI (RPMI1640, 10% FBS,

100 U/mL penicillin/streptomycin; ThermoFisher) per well in a 24-well plate. For culturing splenocytes, the spleen was mashed

through a 40 mm cell strainer followed by an RBC lysis step, and 1 x 106 splenocytes resuspended in 500 mL complete RPMI

were counted and seeded into each well of a 24-well plate. Whole blood or splenocyte culture was treated with 10 ng/mL LPS

and vehicle, exendin-4, or dexamethasone for 6 hours. Culture supernatant was recovered at the end of the experiment for TNF-a

measurement.

Intracerebroventricular injection
Intracerebroventricular (i.c.v.) injection was performed as described.80 In the initial studies, mice were given buprenorphine (100 mg/

kg) subcutaneously 30minutes before the i.c.v. injection as a pre-emptive analgesic.When it was found that buprenorphine interfered

with the effect of exendin-4 on TNF-a (Figure S6A), a 50 mL of 0.5% lidocaine (Aspen) was injected subcutaneously along the incision

line on the scalp as a topical analgesic instead. For the i.c.v. procedures, mice were anaesthetized with isoflurane after which their

scalp was incised. A Hamilton syringe with a 30-gauge needle was inserted into the lateral ventricle, and a volume of 5 mL of vehicle or

antagonists loaded into the syringe was injected slowly. After the injection, the scalp was sutured, and the mice were allowed to rest

for 30 minutes prior to LPS and exendin-4 injections.

Cecal slurry model
Cecal slurry was prepared from 10-week-oldmale C57BL/6Jmice as described.79 Cecal content was collected, resuspended in 15%

glycerol, and serially passed through a 500-mm nylon mesh and a 70-mm cell strainer. The slurry was then aliquoted and cryopre-

served at -80oC.

Male C57BL/6J Glp1rWnt1+/+ or Glp1rWnt1-/- mice aged between 14 – 20 weeks old were injected i.p. with either vehicle (15% glyc-

erol in saline) or 600 mg/kg cecal slurry and subcutaneously with vehicle (saline) or 2.44 nmol/kg semaglutide at the same time. At 3, 6,

9, and 24 hours after the injection, the core temperature of the mice were measured using a RET-3 mouse rectal probe (Braintree

Scientific), and their sepsis phenotypes were scored as described.81 The mice were euthanized 24 hours after the injection. Bacterial

counts were quantified as colony forming units by spread plating 50 mL of whole blood or tissue lysates on trypticase soy agar plates

(Wissent Bioproduct) incubated at 37oC for 24 hours, followed by counting of the colonies grown on the plates.
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Histology
To prepare mouse lungs for histology in euthanized mice, the right bronchus was clamped with a haemostat, and 3 mL of 10%

formalin was administered via the trachea to inflate the left lung at a rate of 200 mL/second. The inflated left lung was collected

and further fixed in 10% formalin for 24 hours, followed by standard dehydration and paraffin embedding. Sections were subjected

to hematoxylin and eosin staining for lung injury scoring, or immunohistochemistry for neutrophil elastase. Staining of neutrophil elas-

tase was performed using a standard immunohistochemical staining protocol. Briefly, antigen retrieval was performed in a Tris-EDTA

pH 9.0 antigen retrieval buffer at 95oC for 20minutes using a decloaking chamber (BiocareMedical), followed by blocking, incubation

with a rabbit anti-neutrophil elastase antibody (1/400; Cell Signalling Technology) at 4oC overnight, incubation with SignalStain Boost

IHCDetection Reagent (Cell Signalling Technology) at room temperature for 30minutes, and development of signals using ImmPACT

DAB Substrate Kit, Peroxidase (Vector Laboratories). All slides were scanned at 20x using a Nanozoomer slide scanner (Hama-

matsu). All image analyses were performed using QuPath 0.44. For lung injury scoring, ten high-power fields were generated

randomly from each scanned section and scored in a blind manner as described previously based on the following five criteria: pres-

ence of neutrophils in alveolar space, presence of neutrophils in interstitial space, presence of hyaline membrane, proteinaceous

debris in alveolar space, and septal thickening.82 For elastase-positive neutrophil counts, ten high-power fields were generated

randomly from each scanned section and counted manually in a blind manner.

Lipidomics
Targeted and untargeted lipidomics were performed on plasma samples from C57BL/6J mice treated with LPS and vehicle or

exendin-4 for 1 hour. The liquid chromatography and tandem mass spectrometry experiments with the associated data analyses

were performed by the Analytical Facility for Bioactive Molecules at the Hospital for Sick Children (Toronto, Canada) as previously

described.83,84 For targeted lipidomics experiments, samples spiked with internal standards were hydrolyzed in 10% KOH in meth-

anol, evaporated under N2 gas, reconstituted in 20%/80%water/acetonitrile, and ran on the Agilent 1290 uHPLC with a Sciex QTrap

5500. Lipid mediator concentrations were calculated by normalizing the peak area ratios of samples to the peak area ratios of

extracted standard mixes of known concentration. For untargeted lipidomics experiments, samples spiked with internal standards

underwent lipid extraction using chloroform. The chloroform layer recovered was evaporated under N2 gas, reconstituted in acidified

2:1 methanol/chloroform, and ran by infusion MS/MSAll on a Sciex 6600 Q-TOF in both positive and negative ESI modes. Peak in-

tensities were reported without normalization in Table S2.

Gastric emptying
Mice were fasted overnight from 5 pm to 9 am (17 hours) prior to the gastric emptying test. Fasted mice were treated with vehicle,

atropine (MilliporeSigma), or DAMGO (MilliporeSigma) 15 minutes before a gavage of acetaminophen (100 mg/kg; MilliporeSigma).

Blood was drawn from the tail vein at 15, 30, and 60 minutes after gavage and plasma was collected. Plasma acetaminophen levels

were measured using an acetaminophen L3K assay (Sekisui).

Heart rate measurement
The heart rate in conscious mice was measured using the ECGenie system (MouseSpecfics).85 The mouse was placed on the

measurement platform to acclimatize for two minutes, and its echocardiogram (ECG) was recorded for two to five minutes. The

ECG was analyzed on LabChart software (ADInstruments) and the heart rate was averaged from three sections of ECG tracings

of 0.5-3 seconds each.

Analyses of published single nucleus RNA sequencing datasets
Published single nucleus RNA sequencing datasets on the brainstem NTS/AP (GSE166648)58 and the hypothalamus (GSE208355)59

were analyzed in Seurat 4.2,78 as described previously.14 The brainstem dataset was subjected to SCTransform, dimensional reduc-

tion, clustering, and UMAP plotting. The R object of the aggregated hypothalamus dataset containing all the processing steps was

used directly for UMAP plotting.59

Statistical analysis
All data were presented as mean ± SD. Student’s t test, one-way ANOVA, or two-way ANOVA were used where appropriate to

calculate statistical significance. For two-way ANOVA, the statistical significance for comparisons between the GLP-1RA and

vehicle group in the presence or absence of an intervention, including genotypes or treatments, was tested using the Sidak

method as post-hoc tests to correct formultiple comparisons. Holm-Sidak tests were used to correct formultiple testing in lipidomics

analyses.
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