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Abstract
Glucagon-like peptide-1 (GLP-1) controls islet hormone secretion, gut motility, and body weight, supporting development of GLP-1 receptor 
agonists (GLP-1RA) for the treatment of type 2 diabetes (T2D) and obesity. GLP-1RA exhibit a favorable safety profile and reduce the incidence 
of major adverse cardiovascular events in people with T2D. Considerable preclinical data, supported by the results of clinical trials, link therapy 
with GLP-RA to reduction of hepatic inflammation, steatosis, and fibrosis. Mechanistically, the actions of GLP-1 on the liver are primarily indirect, 
as hepatocytes, Kupffer cells, and stellate cells do not express the canonical GLP-1R. GLP-1RA reduce appetite and body weight, decrease 
postprandial lipoprotein secretion, and attenuate systemic and tissue inflammation, actions that may contribute to attenuation of metabolic-
associated fatty liver disease (MAFLD). Here we discuss evolving concepts of GLP-1 action that improve liver health and highlight evidence that 
links sustained GLP-1R activation in distinct cell types to control of hepatic glucose and lipid metabolism, and reduction of experimental and 
clinical nonalcoholic steatohepatitis (NASH). The therapeutic potential of GLP-1RA alone, or in combination with peptide agonists, or new small 
molecule therapeutics is discussed in the context of potential efficacy and safety. Ongoing trials in people with obesity will further clarify the 
safety of GLP-1RA, and pivotal studies underway in people with NASH will define whether GLP-1–based medicines represent effective and safe 
therapies for people with MAFLD.
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Gut peptides such as glucagon-like peptide-1 (GLP-1) ex-
hibit pleiotropic actions to control metabolism. Originally 
characterized as a nutrient-stimulated incretin hormone that 
potentiates meal-stimulated insulin secretion, GLP-1 also 
reduces glucagon (GCG) secretion, gastric emptying, gut 
lipoprotein secretion, food intake, and body weight, leading 
to improved metabolic health in animals and humans (1, 
2). Data from animal studies and randomized trials in hu-
mans demonstrate reduction of hepatic fat, inflammation, 
and fibrosis following sustained GLP-1 receptor (GLP-1R) 
agonism, through incompletely understood mechanisms. 
Here we review mechanisms potentially underlying the ac-
tions of GLP-1-based therapeutics, mediated via the canon-
ical GLP-1R, in the setting of metabolic-associated fatty liver 
disease (MAFLD). We update current metabolic concepts 
of GLP-1 action, identifying mechanisms, opportunities, 
and uncertainties surrounding the use of GLP-1R agonists 
(GLP-1RA) for the treatment of MAFLD and nonalcoholic 
steatohepatitis (NASH).

Glucagon-like Peptide-1
Nutrient intake initiates the release of intestinal-derived 
incretin hormones, secreted at low levels in the basal state, 
that reduce postprandial hyperglycemia by augmenting 
meal-stimulated insulin secretion (3). Glucose-dependent 
insulinotropic polypeptide (GIP), the first incretin to be 
identified, was isolated using biochemical purification fol-
lowed by functional characterization in the 1970s (4). The 
sequence of mammalian GLP-1 was discovered in the 1980s, 

deduced from cloning and sequencing of proglucagon 
(GCG) complimentary DNAs and genes (2). N-terminally 
truncated GLP-1(7-37) and GLP-1(7-36)NH2 are the bio-
active forms secreted from gut enteroendocrine L cells, with 
the majority of GLP-1 content localized to the gut. GLP-1 
is continuously secreted at low basal levels in the fasting 
or interprandial state, and circulating levels of GLP-1 in-
crease 2- to 3-fold after meal ingestion (1). GLP-1 is also 
synthesized in the brain stem, transported along axonal 
pathways to different regions of the central nervous system 
(CNS). Although the injured pancreas and islets ex vivo 
are capable of synthesizing GLP-1, the pancreatic levels 
of intact bioactive GLP-1 are extremely low in the normal 
mouse and human pancreas (5-7). Bioactive GLP-1 is rap-
idly cleaved by dipeptidyl peptidase-4 (DPP-4), a widely ex-
pressed serine protease (8) responsible, together with renal 
clearance, for the short half-life of biologically active GLP-1 
in the circulation (t1/2 = <2 minutes). DPP-4 activity gener-
ates GLP-1(9-37) and GLP-1(9-36)NH2, GLP-1 metabolites 
that do not activate the canonical GLP-1R at physiological 
concentrations.

The Glucagon-like Peptide-1 Receptor
The GLP-1R is a heterotrimeric G-protein coupled receptor 
that transduces the insulinotropic effects of GLP-1 in pan-
creatic β cells and mediates GLP-1R–dependent actions in 
extrapancreatic tissues (1, 9). Within the pancreas, GLP-1Rs 
are expressed in β cells and in some α and δ cells, collect-
ively regulating the stimulation of insulin and somatostatin 
and the inhibition of GCG secretion (9). The GLP-1R is 
also expressed in extrapancreatic tissues including the en-
teric and central nervous systems, kidney, gut, lung, intestinal 
intraepithelial lymphocytes (IEL), endothelial cells and vas-
cular smooth muscle cells, and the heart (9). The localization 
of extrapancreatic GLP-1R expression is consistent with roles 
for GLP-1R activation in the inhibition of food intake and 
gastric emptying, cardioprotection, and reduction of inflam-
mation, activities conserved in both preclinical and clinical 
studies (10). In this review, we prioritize studies enabling 
mechanistic attribution of pathways linking canonical 
GLP-1R expression and activity to control of hepatosteatosis, 
inflammation, and fibrosis.

Glucagon-like Peptide-1 Receptor Agonists
Multiple structurally distinct GLP-1RA are utilized for the 
treatment of type 2 diabetes (T2D). These include short-
acting peptides such as exendin-4 or lixisenatide and 
long-acting molecules such as dulaglutide, liraglutide, and 
semaglutide. Liraglutide and semaglutide are also approved 
for the treatment of people with overweight and obesity 

ESSENTIAL POINTS

 • GLP-1R agonists improve inflammation and reduce 
fibrosis in preclinical models of experimental liver 
disease.

 • GLP-1R agonists reduce systemic and hepatic in-
flammation through incompletely understood 
mechanisms.

 • GLP-1R agonists reduce hepatosteatosis in associ-
ation with weight loss.

 • GLP-1R agonists appear to reduce NASH and halt 
fibrosis progression in humans.

 • The development of unimolecular co-agonists and 
combination therapy may improve upon the ac-
tions of GLP-1R agonists alone for the treatment of 
NASH.

 • The cardiovascular safety of GLP-1RA may provide 
additional benefit for people living with NASH.
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(11). In addition to improving glycemic control and redu-
cing body weight, GLP-1RA reduce levels of circulating bio-
markers of hepatic injury and decrease liver fat in animals 
and humans. Nevertheless, the mechanisms linking GLP-1R 
activation to reduced hepatosteatosis remain uncertain and 
somewhat controversial, as the canonical GLP-1R is not ex-
pressed within most major liver cell types, including hepato-
cytes (9). Herein, we review the data supporting the use of 
GLP-1-based medicines for the treatment of metabolic liver 
disease, highlighting key mechanistic concepts and areas of 
uncertainty.

GLP-1 Action on the Liver
Hepatic Glucose Production
GLP-1RA inhibit hepatic glucose production, likely through 
indirect actions via control of insulin and GCG secretion 
(12) and possibly through CNS-dependent mechanisms. 
Conversely, loss of function studies using Glp1r−/− mice 
subjected to a hyperinsulinemic-euglycemic clamp reveal 
elevated endogenous glucose production associated with re-
duced hepatic phosphorylated protein kinase B (Akt) and 
phosphorylated GSK3β expression (13). In healthy humans 
undergoing a 2-hour pancreatic clamp, infusion of glucose 
with GLP-1 (0.4 pmol/kg/min) through the antecubital 
vein inhibits hepatic glucose production, independent of in-
sulin and GCG action (14). Pharmacological studies using 
intracerebroventricular (icv) GLP-1 infusion (0.01  µg/
min) through the lateral cerebral ventricle during a 2-hour 
hyperinsulinemic-euglycemic clamp in mice reduced hepatic 
glucose production, an effect that was attenuated with infu-
sion (0.01 µg/min) of the GLP-1R antagonist exendin(9-39) 
(15). Similarly, injection of GLP-1 (0.01 µg/min) into the ar-
cuate nucleus, but not the third cerebral ventricle or para-
ventricular nucleus, of healthy rats reduced endogenous 
glucose production during a hyperinsulinemic-euglycemic 
clamp (16). A role for the gut-brain-GLP-1 axis in the sup-
pression of acute hepatic glucose production was inferred 
from studies of rats receiving intraduodenal GLP-1, with or 
without hepatic vagotomy (17). Whether CNS GLP-1R cir-
cuits suppress hepatic glucose production in humans is diffi-
cult to ascertain.

Hepatic Glucose Disposal
Several studies support a role for GLP-1 in hepatic and 
nonhepatic glucose disposal. Infusion of GLP-1 (7.5 pmol/kg/
min) via the jejunal and splenic vein in healthy mongrel dogs 
increased hepatic glucose uptake 3-fold compared to saline 
controls, effects that were independent of insulin or GCG se-
cretion and not due to selective activation of GLP-1R signaling 
in the portal vein (18, 19). Similarly, a single 20-µg injection 
of exenatide in mongrel dogs elevated net hepatic glucose up-
take during an intraportal glucose infusion clamp under con-
ditions of postprandial hyperinsulinemia and hyperglycemia, 
findings abolished in the absence of hyperinsulinemia (20). 
Conversely, loss-of-function studies in chow-fed Glp1r−/− mice 
reveal lower levels of hepatic glycogen and phosphorylated 
Akt, consistent with impaired stimulation of hepatic glucose 
uptake (21). Collectively, these studies suggest that GLP-1 in-
directly inhibits hepatic glucose production and stimulates 
liver glucose uptake.

GLP-1 Action on Hepatic Lipid Metabolism
GLP-1RA reduce liver fat and inflammation in rodent and 
human studies, supporting their investigational use in people 
with T2D and nonalcoholic fatty liver disease (NAFLD) at 
risk for developing NASH (10). The effects of GLP-1 on de 
novo lipogenesis, β-oxidation, chylomicron import, and very 
low-density lipoprotein (VLDL) export collectively contribute 
to the lipid-lowering effects of GLP-1RA (Fig. 1).

De Novo Lipogenesis
GLP-1 inhibits hepatic de novo lipogenesis, likely through in-
direct mechanisms. Administration of exendin-4 or liraglutide 
reduced levels of hepatic triglyceride (TG) and cholesterol in 
fructose-fed hamsters or high-fat diet (HFD)-fed mice, re-
spectively, findings associated with a reduction in hepatic 
expression of Srebpf1 and Acc1 (22). Administration of the 
GLP-1RA CNTO3649 or exendin-4 for 4 weeks reduced 
hepatic TG and cholesterol and decreased levels of VLDL-TG 
and VLDL-apoB production in HFD-fed ApoE*3 Leiden 
transgenic mice (23). These findings were accompanied by re-
duced expression of Fasn, Dgat1, and Srebf1, genes control-
ling hepatic lipogenesis.

In a subset of subjects studied in the Liraglutide Safety and 
Efficacy in Patients with Non-alcoholic Steatohepatitis trial, 
adults with obesity treated with liraglutide for 12 weeks [age 
18-70 years, body mass index (BMI > 30)] exhibited reduced 
BMI and glycated hemoglobin (HbA1c), improved insulin-
mediated suppression of hepatic glucose production and 
adipose tissue lipolysis, and reduced hepatic de novo lipogen-
esis (24). In contrast, administration of liraglutide (1.8  mg 
daily) for 16 weeks to people with T2D reduced body weight, 
HbA1c, and liver fat, without any change in de novo lipo-
genesis. Moreover, no differences were detected in levels of 
fasting or postprandial β‐hydroxybutyrate, a marker of hep-
atic fat oxidation (25).

Delivery of Lipid Substrate to the Liver via the Gut
Small-bowel lipid absorption and subsequent chylomicron 
formation are an important source of lipids transported dir-
ectly to the liver. GLP-1R activation robustly reduces entero-
cyte chylomicron production and secretion in animals and 
humans, with or without diabetes. Physiologically, GLP-1R 
blockade with exendin(9-39) (50  nmol/kg) increased levels 
of TG-rich apolipoprotein B-48 (TRL-ApoB-48; a marker of 
intestinally-derived chylomicron secretion) in chow-fed ham-
sters (26). Similarly, genetic disruption of the murine Glp1r 
increased the excursion of TG-rich lipoproteins after olive oil 
loading. How GLP-1 inhibits chylomicron secretion from the 
gut in vivo or isolated intestinal preparations ex vivo (26) in 
the absence of the canonical GLP-1R in enterocytes remains 
uncertain. The most abundant cellular site of GLP-1R expres-
sion within the gut is localized to the IEL (27); however, there 
are few data indicating a role for the IEL GLP-1R in the con-
trol of lipid metabolism. icv injection of exendin-4 (250 ng) 
reduces TRL-apoB48 levels in fat-loaded hamsters at 2, 4, 
and 6 hours post injection, findings attenuated by adrenergic 
and melanocortin-4 receptor blockade (28). Interestingly, 
melanocortin-4 receptor blockade did not abrogate the 
exendin-4–mediated reductions in plasma TGs. Furthermore, 
the actions of intraperitoneal exendin-4 to reduce levels of 
TRL-apoB-48 in hamsters were not blocked by icv injection 
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of exendin(9-39), complicating understanding of the GLP-
1R-dependent pathways controlling enterocyte chylomicron 
secretion (28). Interestingly, intraperitoneal exendin-4 ad-
ministration reduces jejunal TG accumulation assessed by 
biochemical analysis and Oil Red O staining, supporting the 
possibility that reduced chylomicron secretion may be par-
tially attributable to reduction of lipid absorption (28). Varin 
et  al used mouse genetics to interrogate whether neuronal 
GLP-1Rs transduce the hypolipidemic actions of GLP-1RA 
in mice. Surprisingly, disruption of GLP-1R expression in the 
central and enteric nervous system within the Wnt1 expres-
sion domain or abrogation of autonomic GLP-1Rs within 
the Phox2b expression domain did not attenuate the actions 
of multiple GLP-1RA to reduce excursion of TRL following 
olive oil loading in mice (29). Hence, the identity of the pre-
cise GLP-1R+ cell types and pathways communicating signals 
to the enterocyte enabling reduction of chylomicron secretion 
are not yet understood.

Clinical studies reveal GLP-1RA reduces chylomicron 
synthesis and secretion. In 15 healthy men (average age 
41.8 years) studied using a pancreatic clamp, a single sub-
cutaneous injection of exenatide (10  µg) suppressed the 
production rate of TRL-ApoB-48, but not TRL-ApoB-100 
[a marker of low-density lipoprotein cholesterol (LDL)], de-
termined via deuterated leucine enrichment in lipoproteins 

(30). Notably, these actions of exenatide were independent 
of any changes in gastric emptying, as the lipid rich nutri-
ents were delivered to the gut via an intraduodenal tube 
(30). The actions of GLP-1RA to reduce circulating levels 
of TRLs are conserved in people with T2D. Analysis of 
35 individuals (31 men and 4 women) with impaired glu-
cose tolerance or recent onset T2D given a single dose of 
exenatide revealed a pronounced reduction in circulating 
levels of TG, apolipoproteins B-48 and CIII, remnant-like 
lipoprotein cholesterol, and remnant-like lipoprotein TG 
serum apoB48 (31).

These actions of GLP-1RA to suppress TRLs remain 
evident in chronic studies. Treatment of 10 subjects with 
T2D (average age 48.6 years) with 1.2 mg liraglutide daily 
for 6 months reduced ApoB48 levels and ApoB48 produc-
tion rate and enhanced the catabolic rate of ApoB48 (de-
termined via D8-valine isotopes), findings independent of 
body weight loss (32, 33). Similarly, 3 weeks of treatment 
with escalating doses of liraglutide to achieve 1.8 mg daily, 
reduced postprandial levels of TGs and ApoB48, without 
changes in gastric emptying rate, in 20 subjects with T2D 
(34). Comparable findings were observed in 15 people 
with T2D treated with oral semaglutide for 15 weeks, 
demonstrating marked reductions in postprandial levels of 
TGs, VLDL, and ApoB48 (35).

Figure 1. Glucagon-like peptide-1 receptor agonists (GLP-1RA) reduce liver lipids through indirect and direct mechanisms that involve the central 
nervous system (CNS), pancreas, liver and gut. GLP-1RA activates hypothalamic and hindbrain GLP-1R+ neurons in the CNS. This results in reductions 
in food intake and subsequent weight loss, which contributes to the reduction in liver lipids. GLP-1 also potentiates insulin secretion via GLP-1R+ 
pancreatic β cells, resulting in increased adipose nutrient uptake. Adipose insulin signaling provides a buffer for glucose and fatty acids to be stored in 
adipose tissue and not in liver, thereby reducing liver lipid levels. Although hepatocytes do not express the GLP-1R, GLP-1RA reduces hepatic glucose 
production, de novo lipogenesis, triglyceride secretion, and very low-density lipoprotein secretion and increases liver glucose uptake due to increase 
insulin and decreased glucagon signaling from the pancreas. Similarly, enterocytes do not express the GLP-1R, but GLP-1 action is linked to reductions 
in gut chylomicron synthesis, chylomicron secretion, and gut motility. Collectively, direct and indirect mechanisms link GLP-1R activity to biological 
pathways within the CNS, pancreas, liver, and gut, reducing hepatic lipid levels and maintaining liver homeostasis. Abbreviations: IELs, intraepithelial 
lymphocytes; NASH, nonalcoholic steatohepatitis.
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Liver Lipid Flux and VLDL
Consistent with reduction in chylomicron synthesis, GLP-1R 
agonism reduces circulating levels of VLDL, a lipoprotein 
secreted from the liver that transports lipids to other tis-
sues. APOE * 3-Leiden mice fed a HFD for 22 weeks had 
lower plasma TG and rates of VLDL-TG production when 
treated with exendin-4, associated with reductions in body 
weight and liver lipids (23). Chronic exendin-4 administra-
tion for 7 days reduced plasma TG, cholesterol, VLDL-TG, 
and VLDL-cholesterol in 60% fructose–fed hamsters (22). 
Reductions in VLDL were also observed after icv adminis-
tration of exendin-4 (250 ng) in fructose-fed hamsters, find-
ings abolished by subdiaphragmatic truncal vagotomy (22). 
VLDL-TG were also lower in liraglutide-treated C57BL/6J 
mice fed a 4% fructose supplemented diet for 16 weeks (22).

Reduction of circulating levels of VLDL following therapy 
with GLP-1RA is observed in studies of people with T2D 
or obesity (25, 35-37). Interpretation of these experiments 
is often confounded by weight loss and improved glycemia, 
and the identity of the cellular GLP-1Rs important for in-
direct reduction of hepatic VLDL secretion is not clear. 
Notwithstanding the ease of measurement and extensive 
focus on hepatosteatosis as a modifiable consequence of 
therapy with GLP-1RA, changes in hepatic fat are less im-
portant overall as predictors of major liver events and 
cardiometabolic outcomes, relative to changes in fibrosis, as 
discussed further in the following text.

GLP-1RA and Metabolic-associated Fatty 
Liver Disease
NAFLD is a spectrum of metabolism-related liver conditions, 
characterized by ectopic hepatic lipid accumulation not at-
tributed to excessive alcohol consumption (38). It affects 
approximately 25% of the global population (39) and is ac-
companied by large direct and indirect costs (40) highlighting 
the need for solutions to reduce this growing health problem. 
NASH is characterized by hepatosteatosis and hepatic inflam-
mation whereas MAFLD is a contemporary term for fatty 
liver diseases associated with metabolic dysfunction (41). 
Despite extensive clinical investigation, progress has been 
challenging for NASH drug development. GLP-1RA have 
shown protective effects in preclinical and clinical models of 
fatty liver disease, supporting the investigational exploration 
of GLP-1–based therapeutics to treat MAFLD and NASH.

Endogenous GLP-1 Levels in NAFLD
Endogenous GLP-1 levels are reduced in some human 
studies of people with NAFLD and NASH. In 52 individuals 
with biopsy-proven NAFLD (n = 16) and NASH (n = 36), 
glucose-simulated GLP-1 levels were reduced by ~10% com-
pared to 50 healthy controls (42). There was no difference 
in glucose-stimulated GLP-1 levels between the NAFLD and 
NASH groups. Similarly, in a study of 70 individuals with 
overweight or obesity, liver fat measured using the hepatic/
renal echo intensity ratio was inversely correlated with post-
prandial GLP-1 (43). Moreover, plasma levels of DPP-4 may 
be increased in people with T2D, obesity, and NAFLD (44), 
which may further contribute to reduced levels of active 
GLP-1. The importance of circulating GLP-1 for predicting 
liver disease severity independent of confounding variables is 
not established.

GLP-1RA Reduce Hepatic Steatosis
GLP-1RA reduce hepatic steatosis in HFD-fed or genetically 
obese mice. ob/ob mice treated with exendin-4 (10 and 20 µg/
kg/day) for 60 days exhibited reductions in hepatic lipids as-
sessed by histological examination and biochemical quantifica-
tion, an effect associated with weight loss (45). Subsequently, 
multiple studies in mice and rats with experimental NAFLD 
have shown similar reductions in hepatic lipid content following 
treatment with GLP-1RA (46-49). Several studies have demon-
strated GLP-RA-dependent reduction of hepatosteatosis while 
controlling for weight loss. HFD-fed C57BL/6J mice treated 
with the exendin-4-based GLP-1RA, AC3174 (30 mg/kg/day), 
for 4 weeks exhibited greater reductions in liver lipids and hep-
atic enzymes compared to weight-matched pair–fed mice (48). 
After 4 weeks of semaglutide treatment, HFD-fed C57BL/6J 
mice had less liver steatosis and reduced hepatic expression of 
genes important for lipid metabolism (Srebf1, Mlxipl, Fas) and 
inflammation (Il6, Il1b). Analysis of a pair-fed control group 
demonstrated that the steatosis score was not different in pair-
fed vs semaglutide-treated animals, suggesting body weight 
loss as an important contributor to reduction of steatosis (50). 
Notwithstanding speculation that GLP-1RA may act on the 
liver to reduce liver fat via a noncanonical GLP-1R (9), the ac-
tions of GLP-1RA to reduce hepatosteatosis were completely 
extinguished in Glp1r−/− mice (48).

GLP-1RA reduce hepatic steatosis in humans with T2D or 
obesity, mirroring findings in preclinical studies. Liraglutide 
(1.2  mg daily) for 6  months reduced liver fat content from 
17.3% to 11.9% (mean 31% decrease) measured by proton 
magnetic resonance spectroscopy ([1H]-MRS) in 68 individuals 
(both males and females with average BMI of 35.9 ± 6.8) with 
uncontrolled T2D; greater weight loss was associated with 
additional reductions in liver fat (51). Decreased liver fat con-
tent (44%), reduced visceral fat, and weight loss were observed 
in 31 women with polycystic ovary syndrome treated with 
1.8 mg per day of liraglutide for 26 weeks; however, the me-
dian baseline liver fat content in this group was only 1% (52). 
An open-label trial with 0.75 mg once-weekly dulaglutide for 
24 weeks in 27 people (baseline BMI 29.9) with T2D, NAFLD, 
and ≥6.0% magnetic resonance imaging proton density fat 
fraction reported a −32.1% reduction in liver fat content from 
baseline compared to −5.7% in the standard care control group 
(53). Dulaglutide-treated individuals lost 4.3 kg of weight com-
pared to 2 kg in the control subjects (53). As a 5% reduction in 
body weight is sufficient to reduce hepatic steatosis (54), under-
standing the weight loss-independent actions of GLP-1RA in 
people with hepatosteatosis remains challenging.

The combination of twice-daily exenatide (10  µg) with 
pioglitazone (45  mg /day) in 11 individuals with T2D re-
duced hepatic fat (average baseline 12.1%; average post-
treatment 4.7%) to a greater extent than subjects randomized 
to pioglitazone alone, without changes in body weight after 
12  months (55). The exenatide/pioglitazone combination 
improved HbA1c, liver enzymes, and high-density lipopro-
tein cholesterol when compared to 11 pioglitazone-treated 
controls that experienced a 3.7-kg increase in body weight. 
Although the available data highlight the importance of 
weight loss for indirect hepatic actions of GLP-1, it is plaus-
ible that GLP-1RA also regulate hepatic lipid metabolism 
through mechanisms regulating TG-rich chylomicrons, VLDL 
export, hepatic de novo lipogenesis, and/or hepatic mitochon-
drial oxidation, independent of changes in body weight.
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GLP-1RA Reduce Hepatic Inflammation
GLP-1RA reduce systemic and hepatic inflammation in 
studies of animals and people with and without NASH. 
Exendin-4 treatment (50 µg/kg/day) for 4 weeks in APOE*3-
Leiden. CETP mice fed a Western diet reduced liver in-
flammation markers (Tnfa, Il1b, and Il6) and infiltration 
of CD68+, F4/80+, and Mac-1+ cells, determined through 
immunohistochemistry (56). Nevertheless, simultan-
eous reductions in body weight and plasma glucose in the 
exendin-4–treated mice challenge mechanistic interpret-
ation of the anti-inflammatory actions of exendin-4 (56). 
Semaglutide treatment for 17 weeks at 4, 12, and 60 µg/kg/
day in Ldlr−/− mice fed a Western diet reduced liver TGs and 
messenger RNA (mRNA) levels of genes implicated in inflam-
mation and fibrosis, accompanied by a dose-dependent reduc-
tion in body weight (57). Chronic semaglutide (10 µg/kg/day) 
administration for 18 weeks reduced plasma cytokine levels 
[Growth related cytokine (GRO), tumor necrosis factor α, 
interleukin (IL)-6] in high-fat/high-cholesterol diet–fed wild-
type control and Glp1rTie2−/− mice, with a selective knockout 
of the endothelial and hematopoietic cell GLP-1R (49). 
Notably, semaglutide reduced liver TGs and RNA biomarkers 
of inflammation (Tnf, Ccl2, Tgfb1, Cd3g, Il2) in livers from 
Glp1rTie2+/+ but not Glp1rTie2−/− mice. These findings implicate 
endothelial and/or hematopoietic cell GLP-1Rs as targets for 
a subset of actions underlying GLP-1RA-mediated reduction 
of hepatic inflammation (49).

In humans, a 12-week course of liraglutide 1.8 mg daily re-
duced circulating levels of high-sensitivity C-reactive protein 
and the chemokine (C-C motif) ligand 2 (CCL-2) in 7 people 
with biopsy-confirmed NASH (24). Whether these changes 
occurred independent of reduction in glycemia and body 
weight observed in the same subjects cannot be determined. 
Exenatide given acutely or twice daily for 12 weeks reduced 
mRNA transcripts encoding biomarkers of inflammation 
measured in circulating white blood cells of people with T2D, 
independent of changes in body weight (58). Nevertheless, 
a larger 26-week study did not detect consistent directional 
changes in markers of inflammation in white blood cells after 
liraglutide therapy. Moreover, GLP1R mRNA transcripts 
were not detected in human white blood cells (59). Similarly, 
oral semaglutide reduced C-reactive protein to a much greater 
extent than empagliflozin over 26 and 52 weeks in subjects 
with T2D, despite nearly identical weight loss in the 2 treat-
ment arms (60). Collectively, GLP-1RA reduce both systemic 
and hepatic inflammation in preclinical and clinical studies; 
however, the mechanisms remain poorly understood (10) 
and interpretation of the data is often confounded by sim-
ultaneous improvement in multiple metabolic parameters, 
including lipids, glucose, insulin sensitivity, and weight loss.

GLP-1RA and the Reduction of Hepatic 
Fibrosis
Hepatic fibrosis is the buildup of extracellular matrix that 
interferes with hepatocyte and overall liver function and often 
develops secondary to preexisting hepatosteatosis, viral infec-
tion, hepatic inflammation, and hepatic injury (61). GLP-1RA 
reduce levels of key markers of hepatic fibrosis in some but not 
all animal studies. Liraglutide (40 nmol/kg) administration for 
6 weeks in high fat, high fructose, and cholesterol (HFFC)-
fed ob/ob mice reduced levels of liver α-smooth muscle 
actin, hydroxyproline, and hepatic mRNA fibrosis markers 

(Cola11, Col3a1, Col4a1, Timp1). Nevertheless, no change 
in the histology fibrosis score was observed (62). Similarly, 4 
weeks of liraglutide (30 nmol/kg twice daily) reduced hepatic 
inflammation and liver injury in high-fat, high-sucrose diet–
fed guinea pigs, without any histological improvement in fi-
brosis (63). Analysis of methionine-choline–deficient diet–fed 
mice treated with the long-acting GLP-1 analogue, G8, E22, 
G36-GLP-1, designated GLP-1-Fc, exhibited a reduction in 
hepatic expression of only a small subset of fibrosis markers 
(Col1a1, Tgfb) while levels of fibroblast activation protein 
mRNA transcripts were increased by GLP-1-Fc, and hepatic 
stellate cell numbers were not reduced (64). Conversely, high-
fat, high-fructose–fed mice treated with liraglutide 0.4 mg/kg/
day for 12 weeks exhibited reduced body weight, decreased 
markers of hepatic Kupffer and stellate cell activation (ie, 
α-smooth muscle actin, Col1a1, and galectin-3), yet fibrosis 
assessed histologically was not reduced (47). Consistent with 
these findings, the dual peroxisome proliferator-activated re-
ceptor α/δ agonist elafibranor, but not liraglutide (0.2  mg/
kg twice daily for 8 weeks), reduced hepatic fibrosis in 
high-fat, high-sucrose diet–fed C57BL/6J and Lepob/ob mice 
with metabolic liver disease (65). In contrast, a 4-week in-
fusion of liraglutide (570 µg/kg/day via osmotic minipumps) 
in methionine-choline–deficient diet–fed mice reduced hep-
atic RNA biomarkers of fibrosis (Timp1, Serpine1, Mmp13, 
Col1a1, Col1a2, Col1a3) and decreased the number and size 
of collagen fibers and the extent of fibrosis assessed by Sirius 
Red staining of liver sections, without changes in glycemia or 
body weight (66). Liraglutide (50 μM) reduced human stel-
late cell activation and directly reduced stellate cell prolifer-
ation in stellate cell cultures and precision cut human liver 
slices ex vivo (67). However, the direct or indirect mechan-
isms through which GLP-1RA may reduce fibrosis remain 
unclear as the canonical GLP1R has not been detected in hep-
atocytes or Kupffer or stellate cells (49).

The degree of hepatic fibrosis is a primary predictor of 
cardiovascular disease, liver transplant, and death in people 
living with NASH (68). Whether treatment with GLP-
1RA reduces the rate of development or reverses fibrosis in 
people with MAFLD, with or without T2D, remains uncer-
tain. Observational data of subjects with T2D treated with 
a range of GLP-1RA (exenatide, lixisenatide, liraglutide, and 
dulaglutide) for 24  months did not reveal evidence for re-
duced fibrosis assessed using serial analysis of the Fibrosis-4 
Index (69). Among 26 subjects randomized to receive 
liraglutide 1.8 mg daily (vs 26 randomized to placebo) for 48 
weeks, 2 (9%) in the liraglutide group vs 8 (36%) in the pla-
cebo group exhibited biopsy-proven progression of fibrosis 
(70). Moreover, a larger and longer randomized controlled 
trial of semaglutide administration over 72 weeks in subjects 
with NASH, the majority with concomitant stage F2 or F3 
fibrosis, revealed no differences in histological fibrosis scores 
in subjects treated with semaglutide (71). Hence, the available 
preclinical and clinical data examining the actions of GLP-
1RA on progression or resolution of fibrosis are inconsistent, 
and no clear conclusions can yet be drawn.

GLP-1RA and the Treatment of NASH
GLP-1RA reduce hepatic steatosis and inflammation in pre-
clinical models of NASH. Many histological, biochemical, and 
clinical features associated with NASH are reproduced in mice 
using diets that contain HFFC. C57BL/6J mice fed a HFFC 

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article/doi/10.1210/endrev/bnac018/6652476 by U

niversity of Toronto user on 16 August 2022



7Endocrine Reviews, 2022, Vol. XX, No. XX

diet for 29 weeks developed severe NASH and were subse-
quently treated with liraglutide (40 nmol/kg/day) for 6 weeks, 
achieving a 9% reduction in body weight (62). Liraglutide 
reduced liver triacylglycerol (TAG) content, plasma alanine 
aminotransferase (ALT), steatosis, and inflammation scores 
but not levels of type I  collagen, a marker of fibrosis (62). 
Similarly, treatment of HFFC-fed ob/ob mice with liraglutide 
for 8 weeks reduced body weight, liver TAGs, plasma ALT, and 
hepatic markers of inflammation (Ccl2, Cd68 mRNA), and 
fibrosis (liver hydroxyproline and Col1a1, Col3a1, Col4a1 
mRNAs) but did not improve the fibrosis score (62). Related 
findings were described in studies of HFFC-fed C57BL/6JRj 
mice treated with liraglutide (0.4  mg/kg/day) for 12 weeks 
(47). Liraglutide decreased body weight, plasma ALT, and as-
partate aminotransferase (AST), NAFLD activity score (NAS), 
liver TAGs, the extent of hepatocyte ballooning, markers of 
Kupffer cell (galactin-3), and hepatic stellate cell activation 
(α-smooth muscle cell actin), without changes in fibrosis.

Identity of a subset of cellular sites of GLP-1R expression 
important for the hepatoprotective actions of GLP-1RA came 
from studies of high-fat, high-cholesterol diet–fed Glp1rTie2−/− 
mice, with inactivation of the GLP-1R in endothelial and 
hematopoietic/immune cell lineages (49). Semaglutide (10 µg/
kg/day for 18 weeks) reduced liver TGs, fibrosis, and mRNA 
biomarkers of inflammation (Tnf, Ccl2, Tgfb1, Cd3g, Il2) in 
Glp1rTie2+/+ control mice, but these actions were attenuated 
in Glp1rTie2−/− mice, despite comparable weight loss in both 
groups (49). Hence, a subset of the beneficial actions of GLP-
1RA in mouse models of NASH may reflect weight loss–in-
dependent effects through GLP-1Rs within the Tie2 cellular 
domain.

Clinical Studies of GLP-1RA in NASH
GLP-1RA– and GLP-1–based coagonists (72) are being in-
vestigated for the treatment of people with NASH. In a small 
multicenter trial examining the efficacy of liraglutide, 23 indi-
viduals with overweight and obesity, with and without T2D, 
and biopsy-confirmed NASH were treated with daily injec-
tions of liraglutide (1.8 mg) for 48 weeks. As highlighted in 
the previous discussion, 9 of the 23 individuals (39%) had 
resolution of NASH without worsening of fibrosis compared 
to only 2 of 22 individuals (9%) in the control arm (70). 
The improvement in NASH histology was associated with 
a decreased rate of fibrosis progression, a 5% reduction in 
body weight, and a 0.5% reduction in HbA1c (70). Notably, 
weight loss achieved via diet and lifestyle interventions over 
12 months, in the range of ≥7%, has been linked to improve-
ments in liver NASH histology, but not fibrosis, in individ-
uals with NASH (73). A  placebo-controlled trial examined 
the efficacy of once-daily semaglutide at 3 doses (0.1, 0.2, 
or 0.4  mg per day) vs placebo over 72 weeks in 320 indi-
viduals with histology-confirmed NASH. Histological entry 
criteria for enrollment encompassed NAS ≥ 4, ≥1 steatosis, ≥1 
hepatocyte ballooning, ≥1 lobular inflammation, and F1-F3 
fibrosis stage without cirrhosis. The primary endpoint was re-
solved NASH without worsening of fibrosis in the subgroup 
with F2-F3 fibrosis (71). Participants were living with obesity 
or overweight (mean body weight of 98.4  kg); 62% had 
T2D; the average age was 55; and 90, 72, and 158 had stage 
F1, F2, and F3 fibrosis, respectively. Compared to the 17% 
of individuals with resolved NASH in the placebo group, 
NASH resolution was higher in the groups treated with 0.1, 

0.2, or 0.4  mg semaglutide, with 40%, 36%, and 59% of 
participants, respectively, exhibiting biopsy-proven resolved 
NASH without worsening of fibrosis (71). Nevertheless, the 
percentage of study subjects with improvement of at least 
1 liver fibrosis stage with no worsening of NASH was not 
consistently different, perhaps partly reflecting the unexpect-
edly high rate of fibrosis resolution (33%) in the placebo 
group. Worsening of fibrosis was detected in 5% to 10% of 
semaglutide-treated subjects and 19% of the placebo-treated 
group. The mean body weight loss was −5%, −9%, and 
−13% in the 0.1, 0.2, and 0.4  mg semaglutide groups, re-
spectively, compared to −1% in the placebo group. ALT and 
AST assessed over the 72 weeks exhibited dose-dependent re-
ductions in the semaglutide group (27% and 30% reduction 
in ALT and AST, respectively, in the 0.1 mg group; 58% and 
48% reduction in the 0.4 mg group, respectively) compared 
to placebo (19% reduction from baseline levels) (71).

The safety and efficacy of once-weekly semaglutide 
(2.4 mg) was also examined in a 48-week Phase 2, randomized 
placebo-controlled trial, in 71 adults with biopsy-confirmed 
NASH and compensated cirrhosis, with a BMI ≥ 27  kg/m2 
and HbA1c ≤ 9.5% (74). Subjects randomized to semaglutide 
did not exhibit improvement in hepatic fibrosis or resolution 
of NASH, although semaglutide-treated subjects exhibited re-
duced liver enzymes, hepatic fat, circulating TG and LDL, and 
body weight.

A Phase 3 clinical trial (NCT04822181) is assessing 
2.4  mg once-weekly semaglutide in 1200 individuals with 
noncirrhotic NASH, using endpoints that include (1) reso-
lution of NASH without worsening fibrosis, (2) improvement 
in liver fibrosis without worsening of steatohepatitis, and (3) 
time to first liver-related clinical event.

GLP-1R-Dependent Mechanisms Contributing 
to Resolution of NASH
Evidence for Hepatic GLP-1R Expression
The detection of a functional GLP-1R within liver cells, 
including hepatocytes, has been controversial and challenging 
due to very low levels of hepatic GLP-1R expression. Indeed, 
using 125I-GLP-1(7-36)amide as the radioligand, GLP-1R 
binding was not detected using in vitro autoradiography in 
sections from non-neoplastic human liver (75). Similarly, ana-
lysis of monkey liver by immunohistochemistry using the val-
idated Mab 3F52 monoclonal anti-GLP-1R antibody did not 
detect GLP-1R+ liver cells (76). Moreover, reports of GLP-1R 
expression in hepatocytes have been difficult to interpret or 
reproduce, due in part to the nonspecificity of many commer-
cially available reagents for detection of the immunoreactive 
GLP-1R protein (9, 46, 77, 78) and failure to simultaneously 
detect the presence of full-length GLP1R/Glp1r mRNA tran-
scripts or canonical GLP-1R signaling responses within hep-
atocytes (22, 46, 62, 78-80).

Cellular domains of Glp1r transcriptional activity were 
examined using a reporter mouse expressing the tandem 
dimer (td) Tomato protein under the control of the Glp1r pro-
moter. Hepatic tdTomato reporter expression was observed 
within endothelial cells of liver sinusoids, central veins, and 
intrahepatic branches of the portal vein but not in hepatocytes of 
male mice (81). Nevertheless, the same intrahepatic tdTomato+ 
vascular structures were not GLP-1R immunopositive using a 
reasonably validated commercially available antibody (Abcam 
ab218532) (81). Richards et  al examined transcriptional 
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domains of Glp1r expression using transgenic mice expressing 
Cre under the control of Glp1r regulatory sequences to enable 
activation of fluorescent protein reporters such as tdTomato 
red fluorescent protein (82). Glp1r promoter-controlled fluor-
escence was not detected within hepatocytes but was localized 
to fibers adjacent to the portal vein.

Glp1r mRNA transcripts were detected using single cell 
RNA-seq in a subset of murine hepatic endothelial cells 
(83). Consistent with these findings, targeting of the floxed 
Glp1r allele within endothelial and hematopoietic lineages 
from Glp1rTie2−/− mice produced a marked reduction of hep-
atic Glp1r mRNA expression (49). Fluorescent-activated cell 
sorting identified Glp1r mRNA transcripts corresponding to a 
full-length functional GLP-1R within a subset of intrahepatic 
γδ T cells (49). Since hepatocytes, hepatic stellate cells, and 
most immune cells do not express the canonical GLP-1R, the 
cellular mechanisms linking GLP-1R activation to reduction 
of liver steatosis, inflammation, and fibrosis beyond weight 
loss remain unclear. In the following text, we discuss how pu-
tative GLP-1R+–expressing cell types may indirectly affect 
hepatic steatosis and NASH (Fig. 2).

Central Nervous System Actions of the 
GLP-1R, Weight Loss, Energy Balance, 
and NASH
Weight loss likely contributes substantially to the benefits 
of GLP-1RA in NASH, mediated by reductions in food in-
take, a process controlled by multiple widely distributed CNS 
GLP-1R+ cells (11, 29, 84, 85). Inhibition of gastric emptying, 
which is often transient in the context of chronic use of 
long-acting GLP-1RA (86), may also contribute to initial re-
duction of appetite, mediated in mice through intestinofugal 
myenteric neurons projecting to abdominal sympathetic 
ganglia (87). Although GLP-1RA promote beiging and acti-
vation of brown fat leading to weight loss in animals, these 
findings have not yet been reproduced in humans (11). Weight 
loss alone is associated with improvements in hepatosteatosis 
(88), supporting the hypothesis that weight loss contributes 
substantially to resolution of fatty liver and NASH in people 
treated with GLP-1RA.

Achievement of weight loss is increasingly viewed as an ef-
fective adjunctive strategy for NASH (89). In 8 people living 
with obesity and T2D, loss of ~8 kg following consumption 

Figure 2. Glucagon-like peptide-1 receptor agonists (GLP-1RA) reduce nonalcoholic steatohepatitis (NASH) through GLP-1R+ pancreatic β cells and 
central nervous system (CNS) neurons in the brain. GLP-1RA potentiate pancreatic insulin secretion that signals to insulin receptors within adipose 
tissue and liver. Liver insulin signaling increases glycogen synthesis and reduces gluconeogenesis. Insulin signaling in adipose tissue initiates the 
uptake of postprandial nutrients (eg, glucose and fatty acids), which reduces the amount of lipids that are sent to the liver and de novo lipogenesis. 
GLP-1RA also signal through GLP-1R+ CNS neurons to reduce food intake, thereby reducing the amount of glucose, protein, and fatty acids that enter 
and are absorbed via the gut. Some evidence supports a role for CNS-dependent activation of GLP-1Rs to reduce lipid uptake. Reductions in food 
intake and lipid uptake reduce chylomicron synthesis and secretion, resulting in less triacylglycerol and chylomicrons reaching the liver. Since neither 
hepatocytes nor enterocytes express the canonical GLP-1R, current evidence suggests a role for the brain, as well as liver-resident γδ T cells, as 
possible GLP-1R-dependent cell types responsible for reductions in NASH with GLP-1RA therapy. The importance of GLP-1R+ liver-resident endothelial 
cells and gut-resident intraepithelial lymphocytes for hepatic lipid metabolism or hepatic inflammation has not been established.

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article/doi/10.1210/endrev/bnac018/6652476 by U

niversity of Toronto user on 16 August 2022



9Endocrine Reviews, 2022, Vol. XX, No. XX

of a hypocaloric 3% fat diet was associated with an 81% 
reduction in intrahepatic lipid as determined by [1H]-MRS 
(90). Similarly, Lazo et al observed a 50.8% reduction in hep-
atic fat, determined by [1H]-MRS, associated with a 8.3% 
reduction in body weight after 12 months of intensive life-
style intervention to induce a minimum of 7% weight loss 
(54). This was achieved through reduced food intake (1200-
1800 kcal per day) and increased physical activity (175 min/
week) in 46 individuals with T2D and overweight or obesity 
(54). Greater weight loss was correlated with further reduc-
tions in hepatic steatosis. However, biomarkers of liver injury 
(ALT, AST, γ-glutamyl transferase) and circulating cytokines 
(IL-8, IL-10, tumor necrosis factor α) were not different after 
12 months of intensive lifestyle intervention (54). Analysis of 
88 people with histologically proven NASH who lost greater 
than 5% of their body weight by following a 52-week low-fat 
hypocaloric diet and an exercise walking regimen revealed 
that 51 (58%) of the study subjects achieved resolution of 
NASH (91).

Surgical interventions leading to weight loss are also 
associated with improvements in biopsy-confirmed 
NASH. Histological analyses of paired biopsies (pre- and 
postlaparoscopic banding-mediated weight loss) revealed re-
duced hepatosteatosis, lobular inflammation, fibrosis, Mallory 
bodies, and ballooning degeneration in 36 subjects (25 fe-
males, 11 males) with obesity who lost on average 34.0 kg of 
weight (52% of body weight) over ~25.6 months following 
laparoscopic banding (92). Similarly, in a prospective study 
of individuals with severe obesity and biopsy-proven NASH, 
resolution of NASH without progression of hepatic fibrosis 
was reported in 81% of people examined after 1  year and 
84% of subjects studied 5 years after bariatric surgery (93). 
Collectively, weight loss achieved through lifestyle, pharma-
ceutical, or surgical intervention is an effective strategy to re-
duce histologically confirmed NASH.

The results of preclinical (46-48, 56, 62) and clinical (70, 
71) studies using GLP-1RA demonstrate that reductions in 
hepatosteatosis, inflammation, and liver injury are generally 
associated with weight loss. For example, obese mice fed 
a NASH-inducing diet (40% fat, 20% trans fat, 2% chol-
esterol, and 22% fructose) for 36 weeks followed by treat-
ment with 0.4 mg/kg/day liraglutide for 12 weeks exhibited 
lower NASH-associated histology scores (steatosis, lobular 
inflammation, hepatocyte ballooning) compared to baseline. 
The improvements in liver histology were associated with a 
2.3 g reduction in body weight (47). Newsome et al observed 
marked improvements in NASH in human subjects, ages 18 
to 75  years, 62% with T2D, without worsening of fibrosis 
following treatment with semaglutide, 0.1, 0.2, or 0.4 mg per 
day for 72 weeks (71). These improvements were associated 
with dose-dependent reductions in body weight of −4.84%, 
−8.91%, and −12.51%, respectively, from baseline. Whether 
the improvement in NASH reflects mechanistic contributions 
beyond weight loss is difficult to ascertain in clinical studies.

GLP-1R agonism reduces food intake, thereby enabling 
weight loss, through multiple GLP-1R+ regions in the CNS 
(11), predominantly within nuclei localized to the hypo-
thalamus and hindbrain (94-96). Daily icv administration 
of GLP-1 (3 nmol) in rats reduced daily food intake and re-
sulted in a 15% reduction of body weight after 7 days (97). 
Conversely, rats injected with 30 nmol of the GLP-1R antag-
onist, exendin(9-39) by the icv route increased food intake 

and body weight after 4  days (97). The use of site-specific 
peptide injections, mouse genetics, and chemogenetics sup-
port the concept that widely distributed accessible GLP-1Rs 
localized to multiple regions of the CNS, not protected by 
the blood-brain barrier, contribute to the GLP-1R-dependent 
control of food intake (11, 29, 84, 85). Interestingly, weight 
reduction observed in mice treated with dulaglutide (0.05 mg/
kg) was partially attenuated in mice with disruption of GLP-
1Rs in domains of the autonomic nervous system targeted by 
Phox2b-Cre, including the nodose ganglion (29). Moreover, 
chemogenetic studies of gut-brain GLP-1R–dependent cir-
cuits further highlight the pharmacological contributions of 
multiple GLP-1R+ circuits, both within and external to the 
CNS, for the pharmacological control of food intake (98).

Considerable evidence from studies in mice and rats links 
GLP-1R activation to enhanced sympathetic nervous system 
activity, increased beiging of white adipose tissue, and en-
hanced activity of brown adipose tissue (BAT) (99-101), 
resulting in increased energy expenditure. Increased cold-
induced BAT activity has been correlated with relative re-
ductions in hepatic lipid accumulation in adult humans (102, 
103). Nevertheless, metabolic studies of individuals treated 
with liraglutide or semaglutide have not detected evidence 
for increased energy expenditure in the context of GLP-1RA-
induced weight loss in humans (104, 105). Whether GLP-
1RA prevent a greater reduction in energy expenditure in the 
context of reduced food intake and weight loss is uncertain 
and requires more careful study.

The liver is innervated by autonomic nervous system nerve 
fibers important for the central GLP-1R-dependent control of 
hepatic lipid metabolism in fructose-fed mice and hamsters 
(22). Hamsters with a subdiaphragmatic truncal vagotomy 
did not exhibit weight loss or reduction in circulating VLDL 
levels when treated with icv exendin-4, implying the import-
ance of the parasympathetic branch of the vagus nerve in the 
pharmacological response to central GLP-1R agonism (22). 
icv exendin-4 administration also lowers gut chylomicron 
production in hamsters through peripheral adrenergic re-
ceptor and central melanocortin-4 pathways (28). In con-
trast, widespread genetic inactivation of the GLP-1R within 
the CNS and enteric nervous system targeted by Wnt1-Cre 
did not abrogate the GLP-1R–dependent inhibition of post-
prandial TG excursions in mice (29).

Hepatic innervation by both sympathetic and parasympa-
thetic fibers help maintain metabolic homeostasis. icv GLP-1 
administration enhances hepatic Akt phosphorylation and 
lowers levels of hepatic TG in HFD-fed insulin-resistant 
mice studied under hyperinsulinemic euglycemic clamp con-
ditions (15). Conversely, icv administration of the GLP-1R 
antagonist Ex-9 impaired the insulin-mediated suppression 
of hepatic glucose production, collectively supporting a role 
for CNS GLP-1Rs in modulating hepatic metabolism. The 
importance of brain-liver signaling for metabolic actions of 
GLP-1 relevant to humans with liver disease is more challen-
ging to ascertain.

GLP-1, Insulin, Adipose Tissue, Muscle, and 
Hepatic Lipid Metabolism
Sustained weight loss due to GLP-1RA therapy improves 
insulin sensitivity in rodents and humans. In the absence of 
weight loss, GLP-1RA might potentiate glucose-stimulated 
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insulin secretion in people with hyperglycemia, perhaps con-
tributing to excessive hepatic lipid deposition. Theoretically, 
sustained hyperinsulinemia secondary to GLP-1R agonism 
might also augment peripheral insulin signaling to store glu-
cose and fat in liver, white adipose tissue, and muscle. In states 
of hepatic insulin resistance, such as obesity or NASH, hep-
atic insulin signaling is selectively impaired and redirects glu-
cose away from glycogen synthesis and toward pathways of 
lipogenesis, further exacerbating NAFLD.

Interestingly, Glp1r−/− mice exhibit decreased hepatic 
glycogen accumulation and attenuated phosphorylation 
of GSK-3β in the liver, impaired insulin-mediated suppres-
sion of hepatic glucose production and enhanced exercise-
stimulated glucose production independent of insulin action 
(13). Consistent with these findings, icv administration of 
the GLP-1R antagonist exendin (9-39) impaired, whereas 
icv GLP-1 enhanced, the insulin-mediated suppression of 
hepatic glucose production in mice (15). Collectively, these 
findings suggest that GLP-1 may modulate hepatic insulin ac-
tion indirectly through the brain and neural communication. 
GLP-1RA administration is associated with reductions in the 
enzymes implicated in the lipogenic pathway in preclinical 
studies (22, 23, 45, 62), actions likely indirect due to lack of 
Glp1r/GLP1R expression in hepatocytes.

Insulin signaling in white adipose tissue plays an integral 
role in storing TGs, indirectly diverting fatty acids away from 
the liver. During fasting conditions, white adipocytes undergo 
lipolysis, a process that liberates fatty acids and glycerol from 
TGs that are shuttled into the bloodstream as an energy source. 
Conversely, postprandial insulin receptor activation on white 
adipocytes increases both glucose and fatty acid uptake from 
the bloodstream. Importantly, insulin diminishes white adi-
pocyte lipolysis, reducing the amount of adipocyte-derived 
nonesterified fatty acids in the bloodstream. However, lip-
olysis is not blunted postprandially in insulin-resistant white 
adipocytes, thereby releasing fatty acids into the bloodstream 
that can be sequestered by the liver. As GLP-1R activation 
promotes insulin signaling under conditions of hypergly-
cemia, this may blunt adipose tissue lipolysis, thereby redu-
cing the shuttling of free fatty acids to the liver and reducing 
substrate used for de novo lipogenesis. Exendin-4 treatment 
for 7 days was associated with reductions in plasma free fatty 
acid levels and hepatic Srebf1 gene expression, independent 
of reduction in food intake, in hamsters (22). After 12 weeks 
of therapy with liraglutide in 7 people with biopsy-proven 
NASH, GLP-1R agonism led to reductions in hepatic de novo 
lipogenesis (24); however, the mechanistic contributions of 
insulin signaling, adipose tissue, and neural inputs are diffi-
cult to assess in these experiments. Moreover, the canonical 
GLP-1R is not detected in the majority of murine or human 
adipocytes (106, 107).

Skeletal muscle also sequesters glucose and fatty acids 
postprandially, reducing the amount of lipids and glucose 
available to the liver. There is little evidence that GLP-1 dir-
ectly modulates muscle glucose uptake as GLP-1Rs are not 
expressed in skeletal muscle cells (9); however, infusion of 
native GLP-1 augments muscle microvascular blood flow in 
rats and healthy humans (108, 109). Activation or blockade 
of the CNS GLP-1R regulates hepatic glucose production in 
HFD-fed mice; however, no effect of enhanced or reduced 
CNS GLP-1R signaling on skeletal muscle glucose uptake 
was detected in the same experiment (15). Similarly, GLP-1 

infused icv at a rate of 0.01 μg/min did not increase skel-
etal muscle glucose uptake in insulin-clamped HFD-fed mice 
(15). Consistent with the preclinical data, there was no differ-
ence in median change in glucose disposal in response to low 
or high insulin administered via a clamp in 7 subjects with 
biopsy-proven NASH following 12 weeks of liraglutide treat-
ment (24). Hence, it seems unlikely that changes in muscle 
glucose uptake impact hepatic lipid accretion in the context 
of enhanced GLP-1R signaling.

GLP-1, Immune Cells, and Hepatic 
Inflammation
The mechanisms underlying GLP-1RA-dependent reduc-
tions in liver inflammation are unclear, as the majority of 
immune cells do not express the canonical GLP-1R (9, 10). 
Enteroendocrine L cells respond to gut or systemic infection 
or sterile inflammation by increasing the secretion of GLP-1 
(110-114). Intestinal IELs are the major GLP-1R+ immune 
cells in the gut that interact with locally produced GLP-1 
to suppress gut inflammation (27). Deletion of the integrin 
β7 protein, which directs immune cells to the gut increased 
GLP-1 secretion in HFD-fed mice, associated with improved 
glucose homeostasis and reduced atherosclerosis (115). 
Whether augmented or deficient GLP-1R+ IEL activity can 
regulate gut permeability, nutrient absorption, microbiota 
composition, and local or systemic inflammation, which, in 
turn, impacts the extent of hepatic inflammation requires fur-
ther investigation.

Mouse liver expresses a very low level of Glp1r mRNA 
transcripts (46, 49) localized to hepatic endothelial cells and 
CD8+ γδ T cells (49). Interestingly, mice with Tie2-Cre–me-
diated inactivation of Glp1r in endothelial and hematopoi-
etic cells exhibit marked reduction of Glp1r expression in the 
liver (49). γδ T cells receive input from the gut microbiota 
that contributes to development of HFD-induced obesity and 
NAFLD in mice (116, 117). Induction of NAFLD in Tcrd null 
mice deficient in γδ T cells protected against hepatic steatosis, 
lowered ALT levels, and improved insulin sensitivity (116), 
whereas glucose intolerance and ALT levels increased after 
reintroduction of wild-type γδ T cells. Whether γδ T cell 
GLP-1R expression is important for the actions of GLP1RA 
in humans with NASH requires additional analysis.

The invariant natural killer T (iNKT) cell is an immune cell 
type also linked to NASH. iNKT cells recognize CD1d that 
binds to lipid antigens and contributes to hepatocyte cytotox-
icity (118). Liraglutide-dependent activation of murine iNKT 
cells induced fibroblast growth factor 21 (FGF21) secretion 
from inguinal and BAT depots to increase thermogenesis in 
HFD-fed mice, although GLP-1R was not directly localized to 
mouse iNKT cells (101). Notably, the actions of liraglutide to 
reduce body weight were diminished in HFD-fed CD1d and 
Jα18 knockout mice that lack functional iNKT populations. 
Whether iNKT cells mediate the anti-inflammatory actions of 
GLP-1RA in the human liver has not been studied.

GLP-1RA also increase levels of hepatic and circulating 
FGF21 in mouse experiments, findings associated with re-
duction of hepatic glucose output, reduced liver fat, and de-
creased inflammation (119, 120). In contrast, 12 weeks of 
liraglutide administration to subjects with T2D and NAFLD 
reduced body weight and liver fat and decreased circu-
lating levels of FGF21 (121). The importance of FGF21 as a 
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downstream target for GLP-1RA in humans with NASH is 
unclear as GLP-1RA do not consistently induce circulating 
levels of FGF21 in people (122, 123).

GLP-1–based Co-agonists and Combination 
Therapy for the Treatment of Hepatosteatosis 
and NASH
Considerable progress has been made toward improving the 
therapeutic efficacy of GLP-1RA via development of uni-
molecular co-agonists containing GIP or GCG, or use of 
GLP-1RA in combination with amylin agonists (Fig. 4) (72). 
Furthermore, as the majority of drugs under development for 
NASH directly target cells within the liver, it seems likely that 
GLP-1RA will be useful elements of combination therapy for 
tackling distinct complementary pathways in NASH thera-
peutics. For example, the combination of semaglutide plus 
the FXR agonist cilofexor (30 and 100 mg) and/or firsocostat 
(20 mg), the liver-directed acetyl CoA-carboxylase inhibitor, 
produced greater reduction in liver enzymes, hepatic fat, and 
noninvasive imaging and biochemical biomarkers of fibrosis, 
relative to semaglutide alone, in an exploratory 24-week 
Phase 2 trial (124). Real-world data scrutinizing changes in 
liver enzymes in new users of glucose-lowering drugs suggest 
that both sodium-glucose cotransporter-2 (SGLT-2) inhibi-
tors and, to a lesser extent, GLP-1RA, are associated with a 
reduced risk of transaminase elevations in people with T2D 

(125). An open label 52-week randomized trial combining 
the SGLT-2 inhibitor luseogliflozin 2.5  mg once daily, with 
0.5 mg of once-weekly semaglutide is underway in Japanese 
people with NASH and T2D, with primary efficacy endpoints 
to be assessed using liver biopsy (126). Herein, we discuss the 
effects of co-agonist drugs that are in the therapeutic pipeline 
for NAFLD and NASH (Fig. 3).

GIPR:GLP-1R Co-agonists
Tirzepatide (LY3298176) is a unimolecular GIPR and 
GLP-1R co-agonist administered once weekly for the treat-
ment of T2D that may also be effective in lowering markers 
of liver injury and fibrosis. A Phase II clinical trial in people 
with T2D (starting HbA1c 7.0-10.5%, with or without 
stable metformin therapy) administered 1, 5, 10, or 15 mg of 
tirzepatide once weekly for 26 weeks (127, 128). Tirzepatide 
reduced serum ALT by 5 to 10 U/L by study end, and greater 
reductions in ALT were observed with tirzepatide relative to 
people treated with dulaglutide. Dose-dependent reductions 
in TG, ApoC-III, ApoB, and LDL-C levels were observed with 
tirzepatide (129). The levels of keratin-18, an indirect bio-
marker of apoptosis, and procollagen-3, a biomarker for fi-
brosis, were also reduced in people treated with tirzepatide 
(128). In the SURPASS Phase 3 trials for people with T2D, 
tirzepatide reduced plasma lipid levels and body weight, 
actions that may indirectly contribute to improvements in 
NASH biomarkers (130). A  substudy of the SURPASS-3 

Figure 3. Glucagon-like peptide-1 receptor agonist (GLP-1RA)-dependent mechanisms in the reduction on hepatic triglycerides, inflammation, injury, 
and fibrosis. GLP-1RA signals to various GLP-1R+ cell types such as the central nervous system (CNS), pancreatic islets, and immune and endothelial 
cells. Vagal innervation in the CNS is critical to key liver lipid processes, but whether cholinergic signaling is responsible for this is currently unclear. 
Hypothalamic GLP-1R signaling reduces food intake, leading to subsequent weight loss and reductions in glucose and fatty acids. Further, β-cell 
insulin secretion promotes fatty acid and glucose uptake into insulin sensitive tissues, reducing macronutrient inductions of fatty acid synthesis gene 
signature and lipid accretion in the liver and subsequent de novo lipogenesis (DNL) and intrahepatic triglycerides (TGs). The GLP-1RA reduction in 
hepatic TGs has also been linked indirectly to reductions in immune infiltration and inflammation in the liver; however, the mechanisms underlying this 
are currently unclear. GLP-1RA also reduces the accumulation of lipids that lead to lipotoxicity partly due to the reductions in DNL, reducing ballooning 
as well as other markers of hepatic injury. Lastly, the reduction in hepatic lipids, inflammation and injury are all linked to reductions in the fibrosis gene 
signature, leading to reductions in collagen synthesis, extracellular matrix synthesis, and fibrosis. GLP-1RA are also linked to reductions in plasma lipids, 
inflammatory mediators, hepatic injury enzymes, and fibrosis markers. Other GLP-1R+ cell types such as α cells and glucagon signalling, immune cell 
types such as γδ T cells, and intraepithelial lymphocytes (IELs) via cytokines and endothelial cell regulation of blood flow may be other mechanisms that 
may directly or indirectly regulate liver disease, but the mechanisms and the functions of these cells types are less established.
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cohort treated with tirzepatide revealed a marked reduc-
tion in hepatic fat and both visceral and subcutaneous adi-
pose tissue, consistent with the weight loss experienced in 
tirzepatide-treated subjects (131)

A Phase 2 clinical trial examining the efficacy of tirzepatide 
in people with NASH is underway; the primary endpoint 
is the percentage of people with absence of NASH with no 
worsening fibrosis after 52 weeks (NCT04166773).

Glucagon Receptor:GLP-1R Co-agonists
Increased de novo lipogenesis and attenuated mitochondrial 
fatty acid oxidation potentiate hepatic lipid accumulation in 
NAFLD and NASH (132), whereas GCG directly increases 
fatty acid oxidation and decreases hepatic TG synthesis and 
secretion (133). Glucagon receptor (GCGR) activation also 
reduces appetite and body weight, contributing to the effect-
iveness GCGR-GLP-1R co-agonists in preclinical models of 
NASH (72). Both the GCG agonist g1437 and the GCGR-
GLP-1R co-agonist cotadutide, but not liraglutide, reduced 
de novo lipogenesis in mouse hepatocytes (62). Furthermore, 
g1437 and cotadutide increased Ppargc1a/PPARGC1A gene 
expression and mitochondrial biogenesis in murine and 
human hepatocytes and restored mitochondrial respiration in 
hepatocytes isolated from mice with experimental NASH (62). 
C57BL6/J mice fed a HFFC diet for 29 weeks to induce NASH 

and treated with 10 nmol/kg cotadutide for 42 days lost ~10% 
body weight and exhibited lower hepatic lipid levels (TAGs, 
cholesterol esters, and free fatty acids), reductions in plasma 
ALT, and histological reductions in steatosis, inflammation, 
liver injury, and fibrosis (62). These beneficial findings were 
mirrored in ob/ob mice fed a HFFC diet for 8 weeks and then 
treated for 6 weeks with 30 nmol/kg cotadutide (62).

Cotadutide has been studied in 834 adults with T2D (HbA1c 
of 7-10.5%) inadequately controlled with metformin and a 
BMI ≥ 25 kg/m2 (NCT03235050). Study subjects were treated 
with either 100, 200, or 300 µg cotadutide; 1.8 mg liraglutide; 
or placebo daily for 54 weeks. Similar reductions in HbA1c 
and percentage weight loss were observed in cotadutide vs 
liraglutide treatment groups; however, the extent of weight 
loss was greater in the 300 µg cotadutide arm compared to 
liraglutide (−5.01% vs 3.44%, respectively) (134). Notably, 
100, 200, and 300 µg cotadutide reduced plasma ALT levels 
by 7.52%, 12.01%, and 14.15%, respectively, compared to 
3.21% reduction in the liraglutide group. Similarly, plasma 
AST levels were reduced by 1.77%, 6.22%, and 9.14% com-
pared to a 0.35% increase in the liraglutide group. Ongoing 
clinical trials that assess GCGR-GLP-1R co-agonists include a 
12- week clinical trial with pemvidutide (ALT-801) in subjects 
with NAFLD and overweight or obesity with or without T2D 
(NCT05006885). Efinopegdutide administered once weekly 

Figure 4. Combination therapy with glucagon-like peptide-1 receptor (GLP-1R) agonism to reduce liver lipid accretion, inflammation, injury, and fibrosis. 
GLP-1R agonists (GLP-1RA) signal to the brain to reduce food intake and induce subsequent weight loss. Glucagon receptor (GCGR) agonists reduce 
triacylglycerols by reducing de novo lipogenesis (DNL) and increasing β-oxidation (β-Ox) in liver. Degradation-resistant glucose-dependent insulinotropic 
polypeptide receptor (GIPR) agonists act on the brain to reduce food intake and increase lipid accretion via insulin action in adipose tissue, acting as 
a buffer to divert lipids away from liver. Thus, GCGR-GLP-1R and GIPR-GLP-1R co-agonists, as well as unimolecular GLP-1R:GIPR:GCGR triagonists, 
may leverage the effects of these peptide hormones to improve liver health. Farnesoid X receptor (FXR) agonists (1) decrease DNL and β-Ox to reduce 
triacylglycerols and (2) abate gluconeogenesis (GNG) to lower blood glucose levels. Thyroid receptor (TR) modulators also work to reduce hepatic de 
novo lipogenesis and β-Ox to reduce triglycerides (TGs). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) curb glucose reabsorption in kidneys to 
reduce blood glucose levels and promote weight loss through indirect mechanisms. Cannabinoid receptor antagonists (CB-RAn) and amylin receptor 
agonists act on the brain to reduce food intake with subsequent weight loss. fibroblast growth factor 21 (FGF21) combination treatments may also act 
on the liver to reduce TGs, reduce food intake through CNS signaling to increase weight loss, but also increase adipose tissue (AT) insulin sensitivity, 
leading to reduced AT lipolysis and subsequent increases in AT lipid accretion, thereby reducing liver lipids. Collectively, direct and indirect actions of 
GLP-1RA and molecular partners may act through potentiation of weight loss, regulation of liver TAGs, and adipose tissue lipid accumulation to reduce 
hepatic lipid accumulation, inflammation, injury, and fibrosis.
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[MK-6024, previously known as JNJ-64565111 (135)], is 
also being studied 24 weeks, using a primary outcome of re-
duction in liver fat, with semaglutide as an active comparator, 
in people living with NAFLD (NCT04944992).

ALT-801 (pemvidutide) is a GLP-1/GCGR receptor dual 
agonist that improves NASH outcomes in preclinical studies. 
C57BL6/J mice (with biopsy-confirmed NAS score after 29 
weeks on a HFFC diet) were treated with ALT-801 (either 
5 or 10 nmol/kg) for 12 weeks (136) and compared to mice 
treated with semaglutide (10 nmol/kg) or elafibranor (78 µg/
kg). ALT-801 lowered hepatic lipids, liver weight, biomarkers 
of liver injury (plasma ALT and AST), the inflammation marker 
galactin-3, the fibrosis marker Col1a1, and the NAS score (136). 
Mechanistic interpretation of the benefits of ALT-801, currently 
being studied in separate human trials for NASH and obesity 
indications, is confounded by accompanying weight loss.

Long-acting Amylin Analogs and GLP-1RA 
Co-administration
Combination treatment with the long-acting amylin analog 
cagrilintide (AM833) and once-weekly semaglutide warrants 
further exploration for NASH due to the potent reductions 
in food intake and weight loss observed in clinical studies. 
In a Phase 2 trial studying 706 people with a BMI ≥ 30 kg/
m2 or a BMI ≥ 27 kg/m2 with hypertension or dyslipidemia, 
cagrilintide once weekly at doses of 2.4 and 4.5 mg achieved 
a 9.5% and 10.6% reduction in body mass compared to base-
line, respectively (137). A subsequent dose-ranging study of 
the combination of 2.4 mg semaglutide with 0.16 to 4.5 mg 
of cagrilintide once weekly for 20 weeks in people with a BMI 
of 27 to 39.9 kg/m2 reported up to a 17.1% weight loss with 
the cagrilintide/semaglutide combination (138). Whether the 
addition of agents such as cagrilintide will bring additional 
benefits to reduction of NAFLD or NASH beyond those 
achieved with weight loss is uncertain.

GLP-1R:GIPR:GCGR Triagonists
Unimolecular triagonists exhibit simultaneous activity on the 
GLP-1, GIP, and GCG receptors and reduce hepatosteatosis 
and markers of liver injury in preclinical studies. Mice fed a 
high-fat and sucrose diet for 16 weeks exhibited ~ 25% re-
duction in body weight after 20 days of triagonist treatment 
(3 nmol/kg/day), reflecting elevated energy expenditure and re-
duced food intake, compared to just 15% weight loss with a 
GLP-1R/GIPR co-agonist (139). Hepatic lipid content was de-
creased in the GLP-1R/GIPR co-agonist group and to an even 
greater extent in the triagonist-treated group. Interestingly, 
the weight loss achieved with triagonist treatment was abol-
ished in Gcgr−/− mice, but not in Glp1r−/− or Gipr−/− mice (139). 
Similar results were achieved using SAR441255, a triagonist 
that reduces markers of liver injury in diet-induced obese mice 
and nonhuman primates. SAR441255 treatment (30 µg/kg), 
twice per day over 28 to 42  days, reduced body weight by 
~14% and ~13% in obese C57BL/6NHsd mice and obese dia-
betic cynomolgus monkeys, respectively (140). In comparison 
to obese vehicle-treated control mice, 30 µg/kg SAR441255 
administration for 28 days resulted in reductions in AST (282 
vs 117 U/L), ALT (256 vs 50 U/L), and liver weight (1.59 vs 
0.97 g), similar in magnitude to reductions observed in obese 
mice treated with a dual GLP-1R/CGCR agonist (140). Plasma 
lipids were not reduced; however, ALT was lower in obese 
cynomolgus monkeys treated for 6 weeks with a once-daily in-
jection of SAR4441255 (11 µg/kg). Collectively, unimolecular 

triagonists reduce hepatosteatosis and markers of liver injury 
in preclinical models; whether these effects will translate to 
people living with NASH requires additional investigation.

GLP-1RA, NASH, and Cardiovascular Disease
Treatment with long-acting GLP-1RA is associated with re-
ductions in cardiovascular morbidity and mortality in people 
with T2D (141), which may have implications for treating 
people living with NASH as cardiovascular events are the 
leading cause of mortality in individuals with NAFLD and 
NASH (142). Cardiovascular disease risk may be exacerbated 
by perturbations in hepatic lipid metabolism of chylomicrons 
and apoproteins, circulating lipid species that are generally 
attenuated by treatment with GLP-1RA. Multiple preclin-
ical and clinical studies demonstrate acute and sustained re-
duction in TG-rich chylomicrons, apoproteins, and VLDL 
and LDL cholesterol following GLP-1RA therapy (143). As 
enterocytes and hepatocytes do not express the canonical 
GLP-1R, the weight loss–independent mechanisms through 
which GLP-1RA reduce postprandial lipemia remain poorly 
understood (9).

GLP-1RA reduce the rates of myocardial infarction in sev-
eral cardiovascular outcome trials (CVOTs) and decrease 
the rates of stroke, cardiovascular death, hospitalization for 
heart failure, and all-cause mortality by at least 10% in meta-
analyses of long-acting GLP-1RAs (141). The mechanisms 
linking GLP-1RA to reduction of cardiovascular events may 
include risk factor modification (decreases in blood pressure, 
glucose, body weight, and postprandial lipids), reduction of 
inflammation and atherosclerosis, and direct protective ef-
fects on the heart and blood vessels (143, 144). Given the 
high rates of MAFLD in people with T2D and overweight or 
obesity, it seems likely that a substantial proportion of indi-
viduals with T2D and MAFLD were studied in the GLP-1RA 
CVOTs. Whether GLP-1RA can reduce rates of major ad-
verse cardiovascular events in people living with NASH with 
or without T2D is not established. Moreover, the majority of 
CVOTs reporting the safety of GLP-1RA generally exclude 
subjects with known liver disease, do not break down the 
proportion of study subjects with MAFLD, and do not report 
analyses of primary and secondary outcomes by the presence 
or absence of MAFLD.

Liver fibrosis stage has been linked to a greater risk of se-
vere liver-related and cardiovascular events in people living 
with NAFLD and NASH (145, 146) and is the strongest 
predictor of mortality in people with MAFLD, notably in 
subjects with stages 3 and 4 fibrosis (68). Long-term suffi-
ciently powered studies of individuals with NASH at risk for 
developing cardiovascular disease are required to assess the 
cardiovascular safety of GLP-1–based therapies. The time to 
first major cardiovascular event is a prespecified secondary 
outcome in the Effect of Semaglutide in Subjects With Non-
cirrhotic Non-alcoholic Steatohepatitis (ESSENCE) trial 
(NCT 04822181)  that will enroll 1200 subjects with histo-
logical evidence of NASH and hepatic fibrosis, randomized to 
treatment with once-weekly semaglutide (2.4 m) or placebo 
for up to 240 weeks.

Weight Loss-dependent and Independent Effects of 
GLP-1RA in NASH
Since hepatocytes do not express canonical GLP-1Rs, the 
available evidence suggests weight loss may be the primary 
driver of mechanisms linking sustained GLP-1R activation 
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to improvements in NASH. GLP-1R agonism in multiple 
widely distributed GLP-1R+ neuronal populations (84), 
including hypothalamic and hindbrain neurons, reduces 
food intake (11). Weight loss, evident in both preclinical 
and clinical studies, is associated with reductions in hepatic 
steatosis, injury, inflammation, and, in some studies, fibrosis. 
Conversely, GLP-1RA may reduce hepatic inflammation 
and fibrosis through mechanisms independent of weight 
loss (66, 147). Semaglutide therapy resulted in similar 
weight loss in mice with or without hematopoietic and 
endothelial cell-specific deletion of the Glp1r (Glp1rTie2−/−). 
However, liver TGs and the extent of hepatic inflamma-
tion and fibrosis markers were reduced to a lesser extent in 
Glp1rTie2−/− mice (49). These findings were associated with 
detection of a small population of GLP-1R+ intrahepatic γδ 
T cells and endothelial cells; however, the precise functional 
importance of these cell types for the beneficial actions of 
GLP-1RA in NASH requires further study.

Limitations, Uncertainties, and Future 
Directions for GLP-1RA in NASH
A substantial number of preclinical studies link therapy with 
GLP-1RA to reduction of hepatic steatosis and decreased in-
flammation. Notably, many studies do not include standard-
ized histological assessments of inflammation, liver injury, and 
fibrosis, and the predictive value of mouse models for human 
NASH therapeutics continues to be debated (148, 149). 
Although GLP-1RA consistently reduce hepatic steatosis and 
inflammation, the magnitude of improvement in fibrosis de-
tected in trials with liraglutide and semaglutide in people with 
NASH has been more modest and inconsistent (70, 71). It may 
be reasonable to explore the utility of GLP-1RA combination 
therapies, where the second component of the combination 
directly targets fibrosis (150). Beyond combination therapy 
achieved through the use of co-agonists such as tirzepatide, 
cotadutide, and pemvidutide (Fig. 4) (11), preclinical studies 
in animals with MAFLD have demonstrated the feasibility of 
combining GLP-1RA with Farnesoid X receptor agonists such 
as obeticholic acid (151), SGLT-2 inhibitors (152), and can-
nabinoid receptor antagonists (153) (Fig. 4). Complementary 
mechanisms also suggest the possibility of combining GLP-
1RA with thyromimetics for NASH therapeutics (154). GLP-
1RA may be ideally suited for combination therapy in NASH, 
as the majority of its mechanisms do not directly target the liver.

Pivotal insights informing the success of using GLP-1RA for 
NASH will derive in part from results of the ongoing Phase 3 
clinical trial assessing semaglutide 2.4 mg once weekly in people 
with NASH. This trial will also report secondary outcome 
measures of liver-related clinical events, including time to first 
major adverse cardiovascular event, critical for understanding 
semaglutide action in the NASH population at high risk for 
cardiovascular disease. The results of CVOTs using GLP-1RA 
demonstrate a reasonable balance of safety and efficacy in 
people with cardiovascular disease and T2D (141), and safety 
studies of semaglutide in people with obesity are ongoing (155). 
Although the available preclinical and clinical data strongly 
supports the investigational use of GLP-1RA in people with 
NASH, the available efficacy and safety database in humans 
with NASH is limited. The ultimate utility, ideal population, 
duration of therapy, and safety of sustained GLP-1R agonism 
for resolution of NASH and fibrosis is not yet known and will 
be determined by the results of ongoing outcome-driven trials.
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