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The enteroendocrine and enteric nervous systems convey signals through an overlapping network
of regulatory peptides that act either as circulating hormones or as localized neurotransmitters
within the gastrointestinal tract. Because recent studies invoke an important role for vasoactive
intestinal peptide (VIP) as a downstream mediator of glucagon-like peptide-2 (GLP-2) action in the
gut, we examined the importance of the VIP-GLP-2 interaction through analysis of Vip�/� mice.
Unexpectedly, we detected abnormal villous architecture, expansion of the crypt compartment,
increased crypt cell proliferation, enhanced Igf1 and Kgf gene expression, and reduced expression
of Paneth cell products in the Vip�/� small bowel. These abnormalities were not reproduced by
antagonizing VIP action in wild-type mice, and VIP administration did not reverse the intestinal
phenotype of Vip�/� mice. Exogenous administration of GLP-2 induced the expression of ErbB
ligands and immediate-early genes to similar levels in Vip�/� vs. Vip�/� mice. Moreover, GLP-2
significantly increased crypt cell proliferation and small bowel growth to comparable levels in
Vip�/� vs. Vip�/� mice. Unexpectedly, exogenous GLP-2 administration had no therapeutic effect
in mice with dextran sulfate-induced colitis; the severity of colonic injury and weight loss was
modestly reduced in female but not male Vip�/� mice. Taken together, these findings extend our
understanding of the complex intestinal phenotype arising from loss of the Vip gene. Furthermore,
although VIP action may be important for the antiinflammatory actions of GLP-2, the Vip gene is
not required for induction of a gene expression program linked to small bowel growth after
enhancement of GLP-2 receptor signaling. (Endocrinology 153: 0000–0000, 2012)

Enteroendocrine cells are distributed throughout the
stomach and small and large intestine and constitute

an important cellular network coordinating the control
of nutrient ingestion, gall bladder emptying and pan-
creatic exocrine secretion, gut motility, energy absorp-
tion, and nutrient disposal. These actions are accom-
plished by the regulated synthesis and secretion of
dozens of regulatory peptides that act in a paracrine,
neural, and endocrine manner to control energy intake
and assimilation. Accordingly, there is considerable in-
terest in understanding how the enteroendocrine net-

work originates signals that communicate with local
and distant targets.

Proglucagon-derived peptides (PGDP) represent a sub-
set of enteroendocrine-derived hormones that have at-
tracted considerable interest due to their actions on con-
trol of food intake, gastrointestinal motility, and insulin
and glucagon secretion (1). Tissue-specific posttransla-
tional processing of proglucagon in pancreas, intestine,
and brain underlies the complexity of PGDP production in
mammals (2). In the pancreas, the major bioactive PGDP
is glucagon, whereas enteroendocrine cells produce oxyn-
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tomodulin, glicentin, and two glucagon-like peptides
(GLP), GLP-1 and GLP-2 (3). Within the gastrointestinal
tract, GLP-1 engages the enteric nervous system, leading
to control of gut motility and activation of a gut-brain axis
that regulates blood flow, insulin secretion, and glucose
disposal in peripheral tissues (4). The diverse glucoregu-
latory actions of GLP-1 underlie the development of med-
ications based on potentiation of GLP-1 action for the
treatment of type 2 diabetes (5).

GLP-2 cosecreted together with GLP-1 from L cells acts
more proximally in the gut to enhance nutrient absorption
(6). Exogenous GLP-2 administration also expands the
mucosal surface area of the small bowel by stimulating
crypt cell proliferation and inhibiting enterocyte apoptosis
(7). GLP-2 also engages antiinflammatory pathways in the
intestinal mucosa, and administration of GLP-2 receptor
(GLP-2R) agonists attenuates intestinal inflammation in
multiple preclinical models of gut injury (8–15). The ac-
tions of GLP-2 to promote nutrient absorption, reduce gut
motility, and decrease intestinal injury have prompted as-
sessment of whether GLP-2R agonists might be useful for
the treatment of human subjects with short bowel syn-
drome or inflammatory bowel disease (16, 17).

Despite a considerable number of studies describing
actions of GLP-2 on crypt cells, immune cells, and entero-
cytes, the precise mechanisms mediating the actions of
GLP-2 within the gut mucosa remain incompletely under-
stood (18). A single receptor transducing the actions of
GLP-2 has been identified that exhibits considerable
amino acid and structural identity with related members
of the class B G protein-coupled receptor family (19). Lo-
calization of the GLP-2R to specific cell types in the gut has
been challenging, in part due to the low level of GLP-2R
expression, and the quality of antisera required for detec-
tion of the GLP-2R with high sensitivity and specificity.
The GLP-2R has been localized to enteric neurons, myo-
fibroblasts, and subsets of enteroendocrine cells in studies
of the rodent, porcine, and human gastrointestinal tract
(18). Surprisingly, however, GLP-2Rs have not been lo-
calized to crypt cells or enterocytes, implying that many of
the effects of GLP-2 are indirect, generated by one or more
downstream effectors liberated from GLP-2R� cell types.

Analyses of mechanisms mediating GLP-2 action in the
small and large intestine have employed receptor antago-
nists, immunoneutralizing antisera, and knockout mice.
To date, keratinocyte growth factor, IGF-I, and members
of the ErbB superfamily have been implicated as growth
factors transducing the proliferative effects of GLP-2 in
the gut (20–22). In contrast, the mechanisms through
which GLP-2 exerts its antiinflammatory actions are less
well understood. However, several studies have identified
vasoactive intestinal peptide (VIP) as a GLP-2-activated

target that contributes to amelioration of inflammation
after GLP-2 administration in the 2,4,6-trinitrobenzene
sulfonic acid (TNBS) or dextran sulfate (DS) models of rat
colitis (11).

VIP is a 28 amino acid peptide that is widely expressed
in the central, peripheral, and enteric nervous systems.
Within the gut, VIP regulates gut motility, and distur-
bances of VIP innervation have been implicated in the
pathophysiology of irritable bowel syndrome. VIP also
exhibits cytoprotective and vasoactive actions and dis-
plays immunomodulatory activity in experimental models
of inflammation, predominantly in the central and periph-
eral nervous system. Many of the actions ascribed to VIP
overlap those identified for pituitary adenylate cyclase-
activating polypeptide (PACAP), a 28-amino-acid neuro-
peptide that exhibits considerable amino acid identity
with VIP. Furthermore, both VIP and PACAP are capable
of activating three structurally related receptors, albeit
with varying potency, providing considerable complexity
in attribution of precise biological actions to a single pep-
tide and receptor (23–25). Because VIP and GLP-2 exhibit
an overlapping spectrum of actions that encompass effects
on blood flow, inflammation, and cell proliferation and
survival, and VIP has been implicated as a downstream
target of GLP-2 action (11, 26), we have now examined
the requirement for VIP in a spectrum of GLP-2 actions in
Vip�/� mice.

Materials and Methods

Animals
C57BL/6 VIP/peptide histidine isoleucine knockout mice

(Vip�/�) have been described previously (27). Vip�/� littermates
were used as controls for all studies involving Vip�/� mice. Ex-
cept where indicated, studies were performed on female mice
aged 8–12 weeks bred at the Toronto Centre for Phenogenomics
animal facility. Wild-type (WT) mice of the C57BL/6 back-
ground were obtained from the in house colony at the Toronto
Centre for Phenogenomics. C57BL/6J-ApcMin/� mice were pur-
chased from The Jackson Laboratory (Bar Harbor, ME) and
crossed with Vip�/� mice to generate ApcMin/�:Vip�/� mice,
which were then bred to generate ApcMin/�/Vip�/� and ApcMin/

�/Vip�/� mice. Polyp burden was assessed in littermate female
mice at 14–15 wk of age. All animal experiments were approved
by the Animal Care Committee of the Mount Sinai Hospital.

Peptide and drug treatments
Human [Gly2] GLP-2, hence referred to as GLP-2, was from

Pepceutical Ltd. (Nottingham, UK), VIP was purchased from
Bachem (Torrance, CA) and the VIP receptor antagonist [Lys1-
Pro2,5-Arg3,4-Tyr6] VIP (VIP hybrid) (28) from Sigma-Aldrich
(Oakville, Ontario, Canada). Peptides were dissolved in PBS (ve-
hicle) and administered to mice by sc injection. Experiments in-
volving analysis of DS-induced colitis were carried out as pre-

2 Yusta et al. GLP-2 Actions Independent of Vip in Mice Endocrinology, June 2012, 153(6):0000–0000



viously described (15). A clinical disease activity index ranging
from 0–4 (29) was determined by scoring stool consistency,
presence or absence of fecal blood, and weight loss. To assess
intestinal crypt cell proliferation, 5-bromo-2�-deoxyuridine
(BrdU) (Sigma-Aldrich; 100 mg/kg) dissolved in PBS was injected
ip to mice 1 h before death.

Tissue collection, morphometry,
immunohistochemistry, and polyp evaluation

Small intestine and colon were collected, flushed with PBS to
remove luminal contents, and weighed, and lengths were mea-
sured under constant tension. Adjacent 2-cm intestinal segments
were obtained from jejunum and colon and fixed in 10% neutral-
buffered formalin and paraffin embedded or snap-frozen in liq-
uid nitrogen and stored at �70 C. Digital image acquisition and
morphometry were done on 5-�m histological sections stained
with hematoxylin and eosin as described (22, 30, 31). Immuno-
histochemistry was carried out using indirect immunoperoxi-
dase detection with NovaRED substrate (Vector Laboratories,
Burlington, Ontario, Canada) followed by hematoxylin coun-
terstaining. A rabbit polyclonal antilysozyme antibody (Dako-
Cytomation, Mississauga, Ontario, Canada) was used to detect
Paneth cells. BrdU immunopositivity was detected using a mouse
monoclonal anti-BrdU antibody (Invitrogen Canada, Burling-
ton, Ontario, Canada). The incidence of BrdU staining at each
cell position within the crypt was scored in a minimum of 100
half-crypts per mouse. To assess polyp burden in ApcMin/� mice,
the small and large intestines were removed and flushed with

PBS. The small intestine was divided into three equal segments
(proximal, middle, and distal). Then, the intestines were opened
longitudinally, laid flat on Whatman paper, and fixed in 10%
neutral-buffered formalin for 24 h. Fixed intestines were stained
with methylene blue and examined for polyps with the use of a
dissection microscope equipped with an eyepiece micrometer.

Western blot analysis
Whole-tissue extracts were prepared by homogenization of

intestinal segments in RIPA buffer (1% Nonidet P-40, 0.5%
sodium deoxycholate, and 0.1% sodium dodecyl sulfate in PBS)
supplemented with protease and phosphatase inhibitors (Sigma-
Aldrich), 5 mM sodium fluoride, and 200 �M sodium orthovana-
date. Protein (30–45 �g) was used for Western blot analysis as
described (22, 31). The rabbit polyclonal antibody reactive to
lysozyme was from DakoCytomation. A mouse monoclonal an-
tibody against heat-shock protein 90 (BD Biosciences, Missis-
sauga, Ontario, Canada) was used as a loading control.

RNA isolation and quantitative real-time RT-PCR
Total RNA from intestinal tissue was extracted by the gua-

nidinium thiocyanate method and cDNA synthesis performed
with random hexamers and SuperScript II (Invitrogen Canada).
Real-time quantitative PCR was performed on an ABI PRISM
7900HT Sequence Detection System (Applied Biosystems, Fos-
ter City, CA) with TaqMan Universal PCR Master Mix and
TaqMan Gene Expression Assays (Applied Biosystems) for am-
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FIG. 1. Abnormal villus-to-crypt axis architecture in the jejunum of the Vip�/� mouse. A and B, Photomicrographs illustrating typical villous
aberrations (A), including intervillous bridges (arrows) and a spongiform polyp (outlined with a dotted line), and the distinct enlarged crypt
compartment (B) in the jejunum of the Vip�/� mouse. Images were obtained from tissue sections stained for BrdU and counterstained with
hematoxylin. C–E, Crypt depth (C) and crypt cell proliferation (D and E) in the jejunum of Vip�/� mice and WT littermate controls. Tissue sections
were scored for total number of BrdU� cells per half-crypt (D) and incidence of BrdU staining at each cell position within the crypt (E). Position 1
corresponds to the base of the crypt. For C–E, n � 6–9 mice per group combined from two independent experiments. **, P � 0.0; ***, P �
0.001, Vip�/� vs. Vip�/�.
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phiregulin (Mm00437583_m1), cryptdin5 (Mm00651548_g1),
defcr-rs1 (Mm00655850_m1), egf (Mm00438696_m1), egr-1
(Mm00656724_m1), epiregulin (Mm00514794_m1), c-fos
(Mm00487425_m1), glp2r (Mm01329473_m1), hb-egf (Mm-
00439307_m1), igf-1 (Mm00439560_m1), kgf (Mm00433291_
m1), lysozyme P (Mm00657323_m1), pacap (Mm00437433_
m1), phlda-1, (Mm00456345_g1), proglucagon (Mm00801712_
m1), regIII� (Mm00441121_m1), tff3 (Mm00495590_m1),
and tgfa (Mm00446232_m1). Relative quantification of tran-
script levels was performed by the 2��Ct method using the cycle
threshold (Ct) values obtained from the PCR amplification ki-
netics with the ABI PRISM SDS version 2.1 software. The 18S
rRNA was used for normalization because its intestinal expres-
sion remained unaltered regardless of mouse genotype or
treatment.

Statistics
Results are expressed as mean � SE. Statistical significance

was assessed by ANOVA followed by the Bonferroni post hoc
test and, where appropriate, by unpaired Student’s t test using
GraphPad Prism version 4 (GraphPad Software, San Diego, CA).

Results

Because previous experiments assessing the importance of
VIP as a downstream mediator of GLP-2 action have em-
ployed peptide antagonists that may incompletely atten-
uate VIP action (11, 32), we initiated studies using Vip�/�

mice (27). We first examined the baseline phenotype of the

Vip�/� gut. Unexpectedly, Vip�/� jejunum exhibited ab-
errant villous architecture, with a high incidence of spon-
giform polyps and intervillous bridges, consistent with vil-
lous fusion, a rare histological abnormality occasionally
observed in the setting of enteritis (Fig. 1A). Crypt cell
proliferation within the murine small bowel is classically
quantified by assessing the position and number of pro-
liferating cells expressing endogenous markers of cell cycle
progression (Ki67, or proliferating cell nuclear antigen) or
by determination of the number of cells that have taken up
BrdU (33). Both crypt depth (Fig. 1, B and C) and crypt cell
proliferation (Fig. 1D) were significantly increased in the
jejunum of Vip�/� mice. Analysis of the number and dis-
tribution of proliferating cells within the crypt compart-
ment revealed a significant shift in the number and posi-
tion of BrdU� cells in Vip�/� jejunum (Fig. 1E).

The disordered control of small bowel growth in
Vip�/� mice prompted us to examine the mRNA levels of
key peptides and growth factors in the small vs. the large
bowel of Vip�/� vs. Vip�/� mice. Levels of PACAP, Igf1,
and KGF mRNA transcripts were significantly up-regu-
lated, whereas levels of proglucagon were reduced in the
Vip�/� small bowel (Supplemental Fig. 1, published on
The Endocrine Society’s Journals Online web site at http://
endo.endojournals.org). In contrast, both proglucagon
(Gcg), and Glp2r mRNA transcripts were increased in the
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FIG. 2. Reduced expression of Paneth cell-specific products in the jejunum of the Vip�/� mouse. A, Immunohistochemical detection of lysozyme
in the jejunal crypt compartment of mice of the indicated Vip genotype. Photomicrographs are representative of four to six mice per group. B,
Western blot analysis of lysozyme expression in whole-tissue jejunal extracts from four Vip�/� mice and four WT littermates. Anti-heat-shock
protein 90 (Hsp90) antibody was used to monitor loading and transfer conditions. C, Relative mRNA levels of Paneth cell markers in the jejunum of
Vip�/� and Vip�/� mice as assessed by real-time quantitative RT-PCR (n � 8–12 mice per group combined from three independent experiments).
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Vip�/� colon, whereas no changes in levels of TGF�, EGF,
or Tff3 mRNA transcripts were detected in the small or
large bowel of Vip�/� mice.

A reduced intensity of lysozyme-positive Paneth cells
was observed by immunohistochemical analysis at the
crypt base in the Vip�/� small bowel (Fig. 2A). Consistent
with these findings, levels of lysozyme were clearly re-
duced in jejunal extracts from Vip�/� compared with
Vip�/� mice (Fig. 2B). We recently described reduced ex-
pression of antimicrobial gene products and reduced bac-
tericidal activity in mucosal extracts of Glp2r�/� mice,
findings consistent with a defect of Paneth cell activity
(34). Because Paneth cells play an important specialized
role in the defense against microbial-induced intestinal
injury within the gastrointestinal tract (35), we assessed
the expression of mRNA transcripts for key Paneth cell
genes in the Vip�/� small bowel. Analysis of Paneth cell
gene products revealed reduced levels of not only lysozyme
P but also of Defcr-rs1, cryptdin 5, and RegIII� mRNA
transcripts in RNA from Vip�/� jejunum (Fig. 2C). Taken
together, these findings extend previous descriptions of
the basal intestinal phenotype of Vip�/� mice (36).

The increased rates of crypt cell proliferation in Vip�/�

jejunum may reflect ongoing VIP deficiency and/or devel-
opmental changes arising from embryonic absence of Vip
gene products during mouse development. To determine
the reversibility of this phenotype, we treated mice with
exogenous VIP and reassessed crypt cell proliferation. VIP
administration had no effect on crypt depth or crypt cell
proliferation in Vip�/� mice (Fig. 3A). To ascertain
whether diminution of VIP action in WT mice would re-
capitulate the intestinal findings observed in Vip�/� mice,
we treated WT mice with a VIP peptide hybrid antagonist,
100 �g/kg, for 25 d (11). Administration of the VIP hybrid
alone for 25 d had no effect on crypt cell proliferation in
WT mice (Fig. 3B). Furthermore, the ability of GLP-2 to
robustly increase jejunal crypt cell proliferation was un-
altered in mice chronically treated with the antagonist VIP
hybrid (Fig. 3B). Hence, reduction of VIP action does not
affect basal or GLP-2-stimulated control of crypt cell pro-
liferation. To ascertain the potential biological signifi-
cance of the increased rate of crypt cell proliferation ob-
served in Vip�/� mice in a sensitized model of tumor
formation, we generated ApcMin/�:Vip�/� mice and as-
sessed the polyp burden within the intestines. No signifi-
cant differences in polyp number or size were observed in
ApcMin/�:Vip�/� vs. ApcMin/�:Vip�/� mouse intestines
(Supplemental Fig. 2).

Because GLP-2 and VIP exert antiinflammatory, pro-
liferative, and cytoprotective actions in the gastrointesti-
nal tract, we further assessed the requirement for VIP as a
downstream mediator of GLP-2 action in the murine gut.

Acute GLP-2 administration robustly increased the abun-
dance of mRNA transcripts for immediate-early genes and
ErbB ligands, including egr-1, c-fos, Phlda-1, amphiregu-
lin, epiregulin, and Hb-EGF to a comparable level in
Vip�/� vs.Vip�/� mice (Fig. 4A).Consistentwithprevious
findings, acute GLP-2 administration significantly in-
creased crypt cell proliferation in the jejunum of Vip�/�

mice (Fig. 4B). Although the basal rate of crypt cell pro-
liferation was higher in Vip�/� vs. Vip�/� mice, GLP-2
significantly increased crypt cell proliferation in Vip�/�

mice (Fig. 4, B and C). Furthermore, administration of
GLP-2 (0.2 mg/kg) once daily for 9 d produced significant
increases in small bowel weight and jejunal villous height
in both Vip�/� and Vip�/� mice (Fig. 5). Jejunal crypt
depth and colon weight trended higher but were not sig-
nificantly different in GLP-2-treated mice (Fig. 5, B and
D). Hence, VIP is not required for the GLP-2-stimulated
induction of ErbB ligands, immediate-early gene expres-
sion, crypt cell proliferation, or small bowel growth.
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Although GLP-2 action is comparatively greater in
the small relative to the large intestine, exogenous
GLP-2 administration stimulates colonic growth (20)
and attenuates injury to the colonic mucosa in mice with
DS-induced colitis (10, 15). Furthermore, previous
studies have implicated VIP as an essential downstream
antiinflammatory mediator of GLP-2 action in rodents
with experimental intestinal injury (11). Accordingly,
we assessed the severity of intestinal injury in Vip�/� vs.

Vip�/� mice with DS-induced colitis in the presence or
absence of concomitant GLP-2 administration. No dif-
ference in weight loss (Fig. 6A) or in the severity of
colitis (Fig. 6B) was observed across genotypes in the
presence or absence of GLP-2 administration, although
untreated female Vip�/� mice exhibited resistance to DS
administration. In contrast, GLP-2 treatment stimu-
lated small intestinal growth in mice given DS (Supple-
mental Fig. 3).
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Discussion

The Vip�/� mouse exhibits a number of interesting phe-
notypes, including disturbances of circadian rhythm (27),
impaired or enhanced inflammatory responses (37, 38),
and dysglycemia with abnormal sweet taste preference
(39). Very little is known about the basal intestinal phe-
notype of Vip�/� mice; however, increased small bowel
weight and smooth muscle thickening, together with in-
creased villous length and reduced staining of mucus in the
small bowel has been described in the Vip�/� mouse (36).
Moreover, older Vip�/� mice appeared susceptible to the
development of intestinal obstruction. Genetic elimina-
tion of the VIP receptor type 1 (VPAC1) gene results in
impaired neonatal growth, increased mortality of mice
around the time of weaning, and increased mucosal cell
proliferation and thickening of the bowel wall, detected in
mice analyzed at 8 wk of age (40). In contrast, although
VPAC2 knockout mice exhibit enhanced susceptibility to
DS-induced colitis (41), a detailed analysis of the basal
phenotype of the VPAC2�/� small bowel has not yet been
reported. Similarly, although genetic elimination of the
PACAP gene results in enhanced sensitivity to both small
and large bowel injury (42, 43), a small bowel phenotype
arising in uninjured PACAP�/� mice has not yet been
described.

We now extend our understanding
of the importance of Vip gene products
for small bowel growth by demonstrat-
ing enhanced crypt cell proliferation
and reduced levels of Paneth cell-spe-
cific products in the Vip�/� small
bowel. Furthermore, the increased
crypt cell proliferation was not revers-
ible by VIP replacement and was not
reproduced in WT mice treated with
VIP hybrid, a VIP antagonist. Hence,
this phenotype likely evolves at least in
part due to abnormalities arising from
deficiency of one or more Vip gene
products during development. Interest-
ingly, we demonstrated up-regulation
of PACAP gene expression in the jeju-
num and colon of Vip�/� mice (Supple-
mental Fig. 1), raising the possibility
that the intestinal phenotype resulting
from ablation of the Vip gene is par-
tially masked by compensation from re-
lated ligands that activate the same
family of VIP/PACAP receptors. Fur-
thermore, up-regulation of Igf1 and
KGF gene expression in the Vip�/�

small bowel raises the possibility that
one or both of these growth factors contributes to the
Vip�/� phenotype of increased crypt cell proliferation.

We were interested to examine the importance of VIP
as a downstream mediator of GLP-2 action after reports
linking VIP to the antiinflammatory actions of GLP-2.
Immunohistochemistry and in situ hybridization identi-
fied a subset of GLP-2R� enteric neurons in the porcine
and human jejunum, the majority of which also exhibited
VIP or endothelial nitric oxide synthase immunoreactivity
(44). Subsequent studies demonstrated a functional role
for VIP signaling as a downstream mediator of GLP-2
action in rats with TNBS-induced ileitis (11). Both VIP and
GLP-2 independently reduced weight loss and myeloper-
oxidase activity in the inflamed bowel, and in coadmin-
istration experiments, a VIP antagonist blocked the anti-
inflammatory actions of GLP-2 in TNBS-induced
enteritis, as documented by increased myeloperoxidase
activity, enhanced tissue IL-1�, and failure to suppress
IL-10, compared with the effects of GLP-2-treatment
alone. Moreover, acute GLP-2 administration signifi-
cantly increased nuclear c-Fos immunoreactivity in VIP�

ileal submucosal neurons. Quantification of neuronal
populations demonstrated that GLP-2 treatment increases
the number of VIP� neurons in the absence of inflamma-
tion and prevented the loss of VIP� neurons in the context
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of active inflammation (26). VIP has also been proposed as
a mediator of the gastric myorelaxant activity induced by
GLP-2 in the isolated mouse stomach (32).

Previous studies invoking VIP as an essential down-
stream target for GLP-2 action have employed the VIP
receptor antagonist [Lys1-Pro2,5-Arg3,4-Tyr6] VIP (VIP
hybrid) (11, 26, 32). However, this molecule is not com-
pletely specific for VIP action but binds to multiple VIP/
PACAP receptors, predominantly VPAC1 and VPAC2
(45, 46). Hence, this hybrid antagonist molecule blocks
not only endogenous VIP but also endogenous PACAP,
and one or both peptides may be critical functional me-
diators of GLP-2 action. We used Vip�/� mice to identify
the critical role of Vip gene products as downstream tar-
gets for GLP-2 action. Our data clearly show that the
effects of GLP-2 to induce gene expression, crypt cell pro-
liferation, and small bowel growth do not require the Vip
gene. Nevertheless, it seems likely that the antiinflamma-
tory actions of GLP-2 described previously are mediated in
part by VIP and/or PACAP signaling (11, 26).

Unexpectedly, we did not observe a therapeutic effect
of GLP-2 in mice with DS-induced colitis, a model we and
others have previously used to characterize the antiinflam-
matory actions of GLP-2. Notably, previous studies of
GLP-2 action in the DS colitis model have used mice in the

CD1 background (10, 15), whereas the
current study employed mice in the
C57BL/6 background. Hence we were
unable to assess whether the antiin-
flammatory actions of GLP-2 in the DS
colitis model required VIP due to the
lack of GLP-2 efficacy in both male and
female Vip�/� and Vip�/� mice with
colitis. Furthermore, Sigalet and col-
leagues (11) did not examine the inter-
action of GLP-2 and the VIP hybrid an-
tagonist in rats with DS colitis. Hence,
the importance of the GLP-2-VIP inter-
action in this model of colonic inflam-
mation requires further analysis.

In summary, we demonstrate that
Vip�/� mice exhibit markedly in-
creased crypt cell proliferation, in-
creased Igf1 and KGF expression, re-
duced expression of Paneth cell
products, and abnormal villous archi-
tecture; however, these histological ab-
normalities are not reversible after VIP
replacement. Furthermore, attenuation
of VIP signaling with the antagonist
VIP hybrid does not reproduce these
findings in WT mice, strongly suggest-

ing that the basal phenotype arises secondary to develop-
mental loss of Vip gene products. Moreover, although VIP
may be an important target for the antiinflammatory ac-
tions of GLP-2, the Vip gene is not required for the GLP-
2-dependent induction of a gene expression program
linked to stimulation of crypt cell proliferation and small
bowel growth. Additional studies of the relationship link-
ing GLP-2 action to VIP in models of experimental intes-
tinal inflammation may extend our understanding of the
importance of VIP as a downstream target for GLP-2
in vivo.
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Supplemental Figure Legends 

Supplemental Figure 1. Polyp burden in ApcMin/+ mice is not affected by the Vip genotype. Polyp 

count and average polyp diameter along the gastrointestinal tract in ApcMin/+:Vip+/+ mice (n=12) and 

ApcMin/+:Vip-/- littermates (n=14). The small intestine was divided into three equal segments 

(proximal, middle and distal) for polyp assessment. 

 

Supplemental Figure 2. Relative levels of Glp2r and a variety of regulatory peptide/growth factor 

mRNA transcripts  in the jejunum and colon of Vip-/- and Vip+/+ mice as determined by real-time 

quantitative RT-PCR (n=6-8 mice per group). The statistical significance for the comparison of Vip-/- 

vs Vip+/+ is indicated. Data are representative of at least 3 independent experiments. 

 

Supplemental Fig 3. Relative small intestine (SI) weight and jejunal villus height and crypt depth 

in Vip+/+ and Vip-/- male (top panels) and female (bottom panels) mice after 10 days of oral 

dextran sulphate and vehicle or GLP-2 treatment as indicated in the legend of Fig 6.  Each data 

point corresponds to one mouse. The statistical significance for the comparisons is shown in each 

panel. 
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